The entropy of a class of entire functions in a frequency dependent metric
Izvestiya. Mathematics, Tome 10 (1976) no. 5, pp. 1119-1132
Cet article a éte moissonné depuis la source Math-Net.Ru
The present paper gives an estimate of the entropy of the Bernstein class $B_\sigma$ in a spherical metric, which discriminates between low-frequency signals more finely than between high-frequency signals. Bibliography: 4 titles.
@article{IM2_1976_10_5_a8,
author = {V. V. Zmushko},
title = {The entropy of a~class of entire functions in a~frequency dependent metric},
journal = {Izvestiya. Mathematics},
pages = {1119--1132},
year = {1976},
volume = {10},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a8/}
}
V. V. Zmushko. The entropy of a class of entire functions in a frequency dependent metric. Izvestiya. Mathematics, Tome 10 (1976) no. 5, pp. 1119-1132. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a8/
[1] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR | Zbl
[2] Buslaev V. I., Vitushkin A. G., “Otsenka dliny koda signalov s konechnym spektrom v svyazi s zadachami zvukozapisi”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 867–895 | MR | Zbl
[3] Levin B. Ya., Tselye funktsii, In-t mekhaniki MGU, M., 1971
[4] Bernshtein S. N., Sobr. soch., t. 2, AN SSSR, M., 1952, 446–467