The multiple interpolation problem in the space of entire functions of given proximate order
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper criteria are obtained for solvability of the multiple interpolation problem in the class $[\rho(r),\infty)$, where $\rho(r)$ is a proximate order ($\lim_{r\to\infty}\rho(r)=\rho$, $0\leqslant\rho\infty$) for any sequence from a certain class $\textit Л_{\rho(r)}$ or one of its subclasses. The results are applied to find criteria that the system $\{z^{l-1}\exp\lambda_nz$, $l=1,\dots, p_n\}^\infty_{n=1}$ be a basis in its linear hull. Bibliography: 14 titles.
@article{IM2_1976_10_5_a5,
     author = {A. V. Bratishchev and Yu. F. Korobeinik},
     title = {The multiple interpolation problem in the space of entire functions of given proximate order},
     journal = {Izvestiya. Mathematics },
     pages = {1049--1074},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/}
}
TY  - JOUR
AU  - A. V. Bratishchev
AU  - Yu. F. Korobeinik
TI  - The multiple interpolation problem in the space of entire functions of given proximate order
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1049
EP  - 1074
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/
LA  - en
ID  - IM2_1976_10_5_a5
ER  - 
%0 Journal Article
%A A. V. Bratishchev
%A Yu. F. Korobeinik
%T The multiple interpolation problem in the space of entire functions of given proximate order
%J Izvestiya. Mathematics 
%D 1976
%P 1049-1074
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/
%G en
%F IM2_1976_10_5_a5
A. V. Bratishchev; Yu. F. Korobeinik. The multiple interpolation problem in the space of entire functions of given proximate order. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/