The multiple interpolation problem in the space of entire functions of given proximate order
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper criteria are obtained for solvability of the multiple interpolation problem in the class $[\rho(r),\infty)$, where $\rho(r)$ is a proximate order ($\lim_{r\to\infty}\rho(r)=\rho$, $0\leqslant\rho\infty$) for any sequence from a certain class $\textit Л_{\rho(r)}$ or one of its subclasses. The results are applied to find criteria that the system $\{z^{l-1}\exp\lambda_nz$, $l=1,\dots, p_n\}^\infty_{n=1}$ be a basis in its linear hull.
Bibliography: 14 titles.
@article{IM2_1976_10_5_a5,
author = {A. V. Bratishchev and Yu. F. Korobeinik},
title = {The multiple interpolation problem in the space of entire functions of given proximate order},
journal = {Izvestiya. Mathematics },
pages = {1049--1074},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/}
}
TY - JOUR AU - A. V. Bratishchev AU - Yu. F. Korobeinik TI - The multiple interpolation problem in the space of entire functions of given proximate order JO - Izvestiya. Mathematics PY - 1976 SP - 1049 EP - 1074 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/ LA - en ID - IM2_1976_10_5_a5 ER -
%0 Journal Article %A A. V. Bratishchev %A Yu. F. Korobeinik %T The multiple interpolation problem in the space of entire functions of given proximate order %J Izvestiya. Mathematics %D 1976 %P 1049-1074 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/ %G en %F IM2_1976_10_5_a5
A. V. Bratishchev; Yu. F. Korobeinik. The multiple interpolation problem in the space of entire functions of given proximate order. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/