The multiple interpolation problem in the space of entire functions of given proximate order
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper criteria are obtained for solvability of the multiple interpolation problem in the class $[\rho(r),\infty)$, where $\rho(r)$ is a proximate order ($\lim_{r\to\infty}\rho(r)=\rho$, $0\leqslant\rho\infty$) for any sequence from a certain class $\textit Л_{\rho(r)}$ or one of its subclasses. The results are applied to find criteria that the system $\{z^{l-1}\exp\lambda_nz$, $l=1,\dots, p_n\}^\infty_{n=1}$ be a basis in its linear hull. Bibliography: 14 titles.
@article{IM2_1976_10_5_a5,
     author = {A. V. Bratishchev and Yu. F. Korobeinik},
     title = {The multiple interpolation problem in the space of entire functions of given proximate order},
     journal = {Izvestiya. Mathematics },
     pages = {1049--1074},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/}
}
TY  - JOUR
AU  - A. V. Bratishchev
AU  - Yu. F. Korobeinik
TI  - The multiple interpolation problem in the space of entire functions of given proximate order
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1049
EP  - 1074
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/
LA  - en
ID  - IM2_1976_10_5_a5
ER  - 
%0 Journal Article
%A A. V. Bratishchev
%A Yu. F. Korobeinik
%T The multiple interpolation problem in the space of entire functions of given proximate order
%J Izvestiya. Mathematics 
%D 1976
%P 1049-1074
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/
%G en
%F IM2_1976_10_5_a5
A. V. Bratishchev; Yu. F. Korobeinik. The multiple interpolation problem in the space of entire functions of given proximate order. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1049-1074. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a5/

[1] Leontev A. F., “K voprosu ob interpolyatsii v klasse tselykh funktsii konechnogo poryadka”, Matem. sb., 41(83):1 (1957), 81–96 | MR

[2] Firsakova O. S., “Nekotorye voprosy interpolirovaniya s pomoschyu tselykh funktsii”, Dokl. AN SSSR, 120:3 (1958), 477–480 | MR | Zbl

[3] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[4] Leontev A. F., “O znacheniyakh tseloi funktsii konechnogo poryadka v zadannykh tochkakh”, Izv. AN SSSR. Seriya matem., 22 (1958), 387–394 | MR

[5] Lapin G. P., “O tselykh funktsiyakh konechnogo poryadka, prinimayuschikh vmeste s proizvodnymi zadannye znacheniya v zadannykh tochkakh”, SMZh, VI:6 (1965), 1267–1280 | MR

[6] Dragilev M. M., Zakharyuta V. P., Korobeinik Yu. F., “Dvoistvennaya svyaz mezhdu nekotorymi voprosami teorii bazisa i interpolyatsii”, Dokl. AN SSSR, 215:3 (1974), 522–525 | MR | Zbl

[7] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97(139):2 (1975), 193–229 | MR | Zbl

[8] Fridman G. A., “Medlenno rastuschie funktsii i ikh prilozhenie”, SMZh, 7:5 (1966), 1139–1160 | MR | Zbl

[9] Rubel Lee A., Taylor B. A., “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | Zbl

[10] Leontev A. F., “Predstavlenie funktsii obobschennymi ryadami Dirikhle”, UMZh, XXIV:2(146) (1969), 97–164 | MR

[11] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[12] Polia G., Sege G., Zadachi i teoremy iz analiza, t. 2, GITTL, M., 1956

[13] Bratischev A. V., “Ob odnoi interpolyatsionnoi zadache v nekotorykh klassakh tselykh funktsii”, SMZh, XVII:1, 30–43

[14] Köthe G., Topologishe lineare Räume. I, Berlin, Göttingen, Heidelberg, 1960 | MR | Zbl