Discrete symmetry operators for reductive Lie groups
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1003-1029.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a description is given of a family of homomorphisms of elementary $G$-modules (where $G$ is a semisimple connected Lie group) called discrete symmetry operators. Groups of rank 1 are considered in greatest detail. Bibliography: 13 titles.
@article{IM2_1976_10_5_a3,
     author = {D. P. Zhelobenko},
     title = {Discrete symmetry operators for reductive {Lie} groups},
     journal = {Izvestiya. Mathematics },
     pages = {1003--1029},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a3/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Discrete symmetry operators for reductive Lie groups
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1003
EP  - 1029
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a3/
LA  - en
ID  - IM2_1976_10_5_a3
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Discrete symmetry operators for reductive Lie groups
%J Izvestiya. Mathematics 
%D 1976
%P 1003-1029
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a3/
%G en
%F IM2_1976_10_5_a3
D. P. Zhelobenko. Discrete symmetry operators for reductive Lie groups. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1003-1029. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a3/

[1] Araki Sh., “Kornevye sistemy i lokalnaya klassifikatsiya neprivodimykh simmetricheskikh prostranstv”, Matematika, 10:1 (1963), 90–126 | MR

[2] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Struktura predstavlenii, porozhdennykh vektorami starshego vesa”, Funktsionalnyi analiz i ego prilozheniya, 5:1 (1971), 1–9 | Zbl

[3] Dixmier J., Algérbes enveloppantes, Gauthier-Villars, Paris, 1974 | MR | Zbl

[4] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[5] Zhelobenko D. P., Garmonicheskii analiz na poluprostykh kompleksnykh gruppakh Li, Nauka, M., 1974 | MR | Zbl

[6] Zhelobenko D. P., Kompleksnyi garmonicheskii analiz na poluprostykh gruppakh Li, Int. Congress Math., Vancouver, Canada, august 1974 | MR

[7] Lutsyuk A. V., “Gomomorfizmy modulei $M_\chi$”, Funktsionalnyi analiz i ego prilozheniya, 8:4 (1974), 91–92 | MR | Zbl

[8] Matsumoto H., “Quelques remarques sur les groupes de Lie algebriques réels”, J. Math. Soc. Japan, 16:4 (1964), 419–446 | MR | Zbl

[9] Syugiura M., “Klassy sopryazhennykh kartanovskikh podalgebr v poluprostykh veschestvennykh algebrakh Li”, Matematika, 13:3 (1969), 101–155 | MR

[10] Thieleker E., “On the quasi-simple irreducible representations of the Lorentz groups”, Trans. Amer. Math. Soc., 179 (1973), 465–505 | DOI | MR | Zbl

[11] Warner G., Harmonic analysis on semisimple Lie groups. I, Springer-Verlag, Berlin, Heidelberg, New York, 1972

[12] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[13] Schifmann G., “Integrates d'entrelacement”, Comptes Rendus Acad. Sci., 266 (1968), A47–A49