Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 937-1001.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new results on the freeness of projective modules over polynomial rings. In particular we prove the freeness of all projective modules over polynomial rings in five variables with coefficients from an arbitrary field. Bibliography: 46 titles.
@article{IM2_1976_10_5_a2,
     author = {L. N. Vaserstein and A. A. Suslin},
     title = {Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory},
     journal = {Izvestiya. Mathematics },
     pages = {937--1001},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a2/}
}
TY  - JOUR
AU  - L. N. Vaserstein
AU  - A. A. Suslin
TI  - Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 937
EP  - 1001
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a2/
LA  - en
ID  - IM2_1976_10_5_a2
ER  - 
%0 Journal Article
%A L. N. Vaserstein
%A A. A. Suslin
%T Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory
%J Izvestiya. Mathematics 
%D 1976
%P 937-1001
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a2/
%G en
%F IM2_1976_10_5_a2
L. N. Vaserstein; A. A. Suslin. Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 937-1001. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a2/

[1] Abyankhar S. S., Heinzer W., Eakin P., “On the uniqueness of the coefficient ring in a polynomial ring”, J. Alg., 23 (1972), 310–342 | DOI | MR

[2] Artamonov V. A., “Proektivnye metabelevy algebry Li konechnogo ranga”, Izv. AN SSSR. Ser. matem., 36 (1972), 510–522 | MR | Zbl

[3] Artamonov V. A., “Orbity gruppy $\mathbf{GL}(r,k[X_1,\dots,X_n])$”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 484–494 | MR | Zbl

[4] Atya M., Makdonald M., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[5] Bass X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[6] Bass H., “Big projective modules are free”, Ill. J. Math., 7 (1963), 24–31 | MR | Zbl

[7] Bass X., Milnor Dzh., Serr Zh.-P., “Reshenie kongruentsproblemy dlya $SL_n(n\geqslant 3)$ i $Sp_{2n} (n\geqslant 2)$”, Matematika, 14:6 (1970), 64–128 ; 15:1 (1971), 44–60 | Zbl | Zbl

[8] Bass H., “Modules which support nonsingular forms”, J. Alg., 13 (1969), 246–252 | DOI | MR | Zbl

[9] Bass H., Murthy M. P., “Grothendick groups and Picard groups of abelian group rings”, Ann. Math., 86 (1971), 16–75 | DOI | MR

[10] Bass H., “Some problem in “classical” algebraic $K$-theory”, Lecture Notes in Math., 342, 1973, 3–73 | MR | Zbl

[11] Bass H., Tate J., “The Milnor ring of a global field”, Lecture Notes in Math., 342, 1973, 349–446 | MR | Zbl

[12] Brewer J. W., Rutter E. A., “Isomorphic polynomial rings”, Arch. Math., XXIII (1972), 484–488 | DOI | MR

[13] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[14] Cohn P. M., “On the structur of the $GL_2$ of a ring”, Publ. Math. IHES, 30 (1966), 365–413 | Zbl

[15] Dzhekobson N., Teoriya kolets, IL, M., 1947

[16] Eisenbud D., Ewans G., “Three conjecture about modules over polynomial rings”, Lecture Notes in Math., 311, 1973, 344–350 | MR

[17] Eisenbud D., Ewans G., “Generating modules effictively: theorems from algebraic $K$-theory”, J. Alg., 27 (1973), 278–305 | DOI | MR | Zbl

[18] Endo S., “Projective modules over polynomial rings”, J. Math. Soc. Japen, 15 (1963), 339–352 | MR | Zbl

[19] Horrocks G., “Projective modules over polynomial an extended local ring”, Proc. London Math. Soc., 14 (1964), 711–718 | MR

[20] Karoubi M., “Periodicite de la $K$-theorie hermitienne. Les theories $V^n$ et $_nU$”, Comptes Rendus Acad. Sci. Paris, 273 (1971), 802–805 ; Lecture notes in Math., 343, 1973, 301–411 | MR | Zbl | MR | Zbl

[21] Krusenmeyer M., “Fundamental groups, algebraic $K$-theory and a problem of Abyankhar”, Inv. Math., 19 (1973), 15–47 | DOI

[22] Leng S., Aglebra, Mir, M., 1969

[23] Lissner D., Moore N., “Projective modules over certain rings of quotients of affine rings”, J. Alg., 15 (1970), 72–80 | DOI | MR | Zbl

[24] Murthy M. P., Perdini C., “$K_0$ and $K_1$ of a polynomial rings”, Lecture Notes in Math., 342, 1973, 109–121 | MR | Zbl

[25] Murthy M. P., “Projective $A[x]$ -modules”, J. London Math. Soc., 41 (1966), 453–456 | DOI | MR | Zbl

[26] Murthy M. P., Towber J., “Algebraic vector bundles over $k^3$ are trivial”, Inv. Math., 24 (1974), 173–190 | DOI | MR

[27] Murthy M. P., “Vector bundles over affine surfaces birationally equivalent to a ruled surfaces”, Ann. Math., 89 (1969), 242–253 | DOI | MR | Zbl

[28] Ranicki A. A., “Algebraic $L$-theory”, Comment. Math. Helv., 49 (1974), 137–167 | DOI | MR | Zbl

[29] Rozenlikht M., “Otnosheniya ekvivalentnosti na algebraicheskikh krivykh”, Matematika, 5:1 (1961), 3–30

[30] Schwarzenberger L. E., “Vector bundles on the projective plane”, Proc. London Math. Soc., 11 (1966), 623–640 | DOI | MR

[31] Segre B., “Intersezioni complete di due ipersuperficie algebriche in uno spazio affine, et non estendibilita di un theorema di Seshadri”, Rev. Roum. Math. Pures et Appl., 9 (1970), 1527–1534 | MR

[32] Serre J.-P., “Faisceaux algebraiques coherents”, Ann. Math., 61 (1955), 197–278 ; Rassloennye prostranstva, IL, M., 1958 | DOI | MR | Zbl

[33] Serre J.-P., “Modules projectifs et espaces fibrés à fibre vectorielle”, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot (1957/58, Fasc. 2, Exposé 23), Secrétariat mathématique, Paris, 1958, 18 | MR

[34] Serre J.-P., “Sur les modules projectifs”, Sein. Dubreil, v. 2, 1960–1961

[35] Seshadri C. S., “Algebraic vector bundles over the product of an affine curve and the affine line”, Proc. Amer. Math. Soc., 10 (1959), 670–673 | DOI | MR | Zbl

[36] Seshadri C. S., “Triviality of vector bundles over the affine space $K^2$”, Proc. Nat. Acad. Sci. USA, 44 (1958), 456–458 | DOI | MR | Zbl

[37] Suslin A. A., “O proektivnykh modulyakh nad koltsami mnogochlenov”, Tez. dokladov 12-i Vsesoyuzn. algebr. koll. (Sverdlovsk., sent. 1973)

[38] Suslin A. A., “O proektivnykh modulyakh nad koltsami mnogochlenov”, Matem. sb., 93 (1974), 588–595 | MR | Zbl

[39] Swan R. G., “A conception theorem for projective modules in the metastable range”, Inv. Math., 27 (1974), 23–44 | DOI | MR

[40] Vasershtein L. N., “$K_1$-teoriya i kongruentsproblema”, Matem. zametki, 5 (1969), 233–244 | MR

[41] Vasershtein L. N., “O gruppe $SL_2$ nad dedekindovymi koltsami arifmeticheskogo tipa”, Matem. sb., 89 (1972), 313–322

[42] Vasershtein L. N., “Stabilizatsiya dlya klassicheskikh grupp nad koltsami”, Matem. sb., 93 (1974), 268–295

[43] Vasershtein L. N., “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsom s involyutsiei”, Matem. sb., 81 (1970), 328–351

[44] Vasershtein L. N., “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. analiz, 5:2 (1971), 17–27 | MR | Zbl

[45] Vasershtein L. N., “Stroenie klassicheskikh arifmeticheskikh grupp ranga, bolshego 1”, Matem. sb., 91 (1973), 445–470

[46] Vasershtein L. N., Suslin A. A., “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $K$-teoriya”, Funkts. analiz, 8 (1974), 65–66