Inequalities between derivatives in $L_p$-metrics for $0$
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 823-844
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider inequalities of the form
\begin{equation}
\|f^{(k)}\|_{L_q}\leqslant K\|f\|^\alpha_{L_p}\|\Phi\|^\beta_{L_r},
\tag{1}
\end{equation}
where $\Phi(x)$ is an arbitrary majorant of the function $f^{(l)}(x)$, $x\in(-\infty,\infty)$, $k\leqslant l$. The set of parameters $p,q,r,k,l$ for which the inequalities (1) hold is described. Various generalizations of these inequalities are given.
Bibliography: 22 titles.
@article{IM2_1976_10_4_a9,
author = {V. N. Gabushin},
title = {Inequalities between derivatives in $L_p$-metrics for $0<p\leqslant\infty$},
journal = {Izvestiya. Mathematics },
pages = {823--844},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a9/}
}
V. N. Gabushin. Inequalities between derivatives in $L_p$-metrics for $0