Finiteness conditions for monodromy of families of curves and surfaces
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 749-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show how to compute the Jordan decomposition of the monodromy of a one-parameter family of curves or surfaces in terms of the homology of the special fiber. Bibliography: 12 titles.
@article{IM2_1976_10_4_a4,
     author = {A. N. Todorov},
     title = {Finiteness conditions for monodromy of families of curves and surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {749--762},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a4/}
}
TY  - JOUR
AU  - A. N. Todorov
TI  - Finiteness conditions for monodromy of families of curves and surfaces
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 749
EP  - 762
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a4/
LA  - en
ID  - IM2_1976_10_4_a4
ER  - 
%0 Journal Article
%A A. N. Todorov
%T Finiteness conditions for monodromy of families of curves and surfaces
%J Izvestiya. Mathematics 
%D 1976
%P 749-762
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a4/
%G en
%F IM2_1976_10_4_a4
A. N. Todorov. Finiteness conditions for monodromy of families of curves and surfaces. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 749-762. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a4/

[1] Clemens C. H., “Picard–Lefschets theorem for families of algebraic varieties ecquiring ordinary singularities”, Trans. Amer. Math. Soc., 136 (1969), 93–108 | DOI | MR | Zbl

[2] Le Dung Trang, “Sur le noeuds algébrique”, Compositio Math., 25 (1972), 281–321 | MR | Zbl

[3] A'Campo N., “Sur la monodromy des singularites isolees d'hyper surfaces complexes”, Inventiones Math., 20 (1973), 147–169 | DOI | MR

[4] Malgrange B., “Letter to the Editors”, Inventiones Math., 20 (1973), 171–172 | DOI | MR | Zbl

[5] Woods J., “Some criteria for finite and infinite monodromy of plane curves”, Inventiones Math., 26 (1974), 179–185 | DOI | MR | Zbl

[6] Kempf G., Knutsen F., Mumford D., Saint-Donat B., Toroidal Embeddings, Lecture notes in Math., 339, Springer-Verlag, Berlin, Heidelberg, New York, 1973 | MR | Zbl

[7] Lefschetz S., L'analysis et la geometrie algebrique, Gauthier–Villars, Paris, 1924 | Zbl

[8] Griffiths Ph., Schmid W., Recent Development in Hodge Thery: a discussion of technique and results, preprint, 1973 | MR

[9] P. Deligne, N. Katz (eds.), Groupes de monodromie en Geometrie Algebrique (Seminar de Geometrie Algebrique du Bois–Marie 1967–1969 SGA 7), Lecture Notes in Math., 340, Springer-Verlag, Berlin, Heidelberg, New York, 1973 | MR

[10] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, Mir, M., 1961

[11] Serr Zh.-P., Kogerentnye algebraicheskie puchki. Rassloennye prostranstva, Sbornik perevodov, IIL, M., 1958

[12] Griffits F. A., “Doklad o variatsii struktury Khodzha (obzor osnovnykh rezultatov i obsuzhdenie otkrytykh problem i gipotez)”, Uspekhi matem. nauk, XXV:3 (1970), 175–234 | MR