On homomorphisms of Abelian schemes
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 731-747.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider homomorphisms of abelian schemes $\pi_i\colon X_i \to S$ ($i=1,2$) over a connected smooth algebraic curve $S$ defined over the field of complex numbers. We prove that under certain natural conditions the canonical map $$ \operatorname{Hom}_S(X_1,X_2)\to\operatorname{Hom}(R_1\pi_{1*}Z,R_1\pi_{2*}Z) $$ is an isomorphism. Bibliography: 5 titles.
@article{IM2_1976_10_4_a3,
     author = {S. G. Tankeev},
     title = {On homomorphisms of {Abelian} schemes},
     journal = {Izvestiya. Mathematics },
     pages = {731--747},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On homomorphisms of Abelian schemes
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 731
EP  - 747
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/
LA  - en
ID  - IM2_1976_10_4_a3
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On homomorphisms of Abelian schemes
%J Izvestiya. Mathematics 
%D 1976
%P 731-747
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/
%G en
%F IM2_1976_10_4_a3
S. G. Tankeev. On homomorphisms of Abelian schemes. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 731-747. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/

[1] Delin P., “Teoriya Khodzha. II”, Matematika, 17:5 (1973), 3–56 | MR

[2] Delin P., Mamford D., “Neprivodimost mnogoobraziya krivykh zadannogo roda”, Matematika, 16:3 (1972), 13–53 | Zbl

[3] Grothendieck A., “Un théorème sur les homomorphismes de schémas abéliens”, Invent. Math., 2 (1966), 59–78 | DOI | MR | Zbl

[4] Grothendieck A., “Éléments de géometrie algébrique. III”, Publ. Math. IHES, 1961, no. 11, 349–511; 1963, no. 17, 137–223 | MR | Zbl

[5] Khironaka Kh., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR