On homomorphisms of Abelian schemes
Izvestiya. Mathematics, Tome 10 (1976) no. 4, pp. 731-747
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider homomorphisms of abelian schemes $\pi_i\colon X_i \to S$ ($i=1,2$) over a connected smooth algebraic curve $S$ defined over the field of complex numbers. We prove that under certain natural conditions the canonical map $$ \operatorname{Hom}_S(X_1,X_2)\to\operatorname{Hom}(R_1\pi_{1*}Z,R_1\pi_{2*}Z) $$ is an isomorphism. Bibliography: 5 titles.
@article{IM2_1976_10_4_a3,
author = {S. G. Tankeev},
title = {On homomorphisms of {Abelian} schemes},
journal = {Izvestiya. Mathematics},
pages = {731--747},
year = {1976},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/}
}
S. G. Tankeev. On homomorphisms of Abelian schemes. Izvestiya. Mathematics, Tome 10 (1976) no. 4, pp. 731-747. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/
[1] Delin P., “Teoriya Khodzha. II”, Matematika, 17:5 (1973), 3–56 | MR
[2] Delin P., Mamford D., “Neprivodimost mnogoobraziya krivykh zadannogo roda”, Matematika, 16:3 (1972), 13–53 | Zbl
[3] Grothendieck A., “Un théorème sur les homomorphismes de schémas abéliens”, Invent. Math., 2 (1966), 59–78 | DOI | MR | Zbl
[4] Grothendieck A., “Éléments de géometrie algébrique. III”, Publ. Math. IHES, 1961, no. 11, 349–511; 1963, no. 17, 137–223 | MR | Zbl
[5] Khironaka Kh., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR