On homomorphisms of Abelian schemes
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 731-747
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider homomorphisms of abelian schemes $\pi_i\colon X_i \to S$ ($i=1,2$) over a connected smooth algebraic curve $S$ defined over the field of complex numbers. We prove that under certain natural conditions the canonical map
$$
\operatorname{Hom}_S(X_1,X_2)\to\operatorname{Hom}(R_1\pi_{1*}Z,R_1\pi_{2*}Z)
$$
is an isomorphism.
Bibliography: 5 titles.
@article{IM2_1976_10_4_a3,
author = {S. G. Tankeev},
title = {On homomorphisms of {Abelian} schemes},
journal = {Izvestiya. Mathematics },
pages = {731--747},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/}
}
S. G. Tankeev. On homomorphisms of Abelian schemes. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 731-747. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a3/