On the point spectrum in the quantum-mechanical many-body problem
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 861-896.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a complete formulation and proof of a number of assertions regarding the point spectrum of the Schrödinger operator of a many-particle system announced earlier by the author. In particular, conditions that the discrete spectrum of this operator be finite are obtained. The results of the work are applicable to certain specific quantum systems, for example, to univalent negative atomic ions and to diatomic molecules. Bibliography: 20 titles.
@article{IM2_1976_10_4_a11,
     author = {D. R. Yafaev},
     title = {On the point spectrum in the quantum-mechanical many-body problem},
     journal = {Izvestiya. Mathematics },
     pages = {861--896},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - On the point spectrum in the quantum-mechanical many-body problem
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 861
EP  - 896
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/
LA  - en
ID  - IM2_1976_10_4_a11
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T On the point spectrum in the quantum-mechanical many-body problem
%J Izvestiya. Mathematics 
%D 1976
%P 861-896
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/
%G en
%F IM2_1976_10_4_a11
D. R. Yafaev. On the point spectrum in the quantum-mechanical many-body problem. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 861-896. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/

[1] Yafaev D. R., “O diskretnom spektre trekhchastichnogo operatora Shredingera”, Dokl. AN SSSR, 206:1 (1972), 68–70

[2] Yafaev D. R., “Tochechnyi spektr v kvantovomekhanicheskoi zadache mnogikh chastits”, Funkts. analiz i ego prilozheniya, 6:4 (1972), 103–104 | MR

[3] Zhislin G. M., “Issledovanie spektra operatora Shredingera dlya sistemy mnogikh chastits”, Tr. Mosk. matem. ob-va, 9 (1960), 81–120 | Zbl

[4] Zhislin G. M., “Issledovanie spektra differentsialnykh operatorov kvantovomekhanicheskikh sistem mnogikh chastits v prostranstvakh funktsii zadannoi simmetrii”, Izv. AN SSSR. Ser. matem., 33 (1969), 590–649 | Zbl

[5] Hunziker W., “On the spectra of Schrödinger multiparticle hamiltonians”, Helv. Phys. Acta, 39 (1966), 451–462 | MR | Zbl

[6] Weinberg S., “Systematic solution of multiparticle scattering problems”, Phys. Rev., ser. B., 133:1 (1964), 232–256 | MR

[7] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LXIX, 1963 | MR | Zbl

[8] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 | MR

[9] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55:2 (1961), 125–174 | MR | Zbl

[10] Zhislin G. M., “O konechnosti diskretnogo spektra operatorov energii kvantovykh sistem mnogikh chastits”, Dokl. AN SSSR, 207:1 (1972), 25–28 | MR | Zbl

[11] Uchiyama J., “Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system”, Publ. Res. Inst. Math. Sci., 5:1 (1969), 51–63 | DOI | MR | Zbl

[12] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94:4 (1974), 567–593 | Zbl

[13] Symon B., “On the infinitude or finiteness of the number of bound states of an $N$-body quantum system”, Helv. Phys. Acta, 43:6–7 (1970), 607–630 | MR

[14] Antonets M. A., Zhislin G. M., Shereshevskii I. A., “O diskretnom spektre gamiltoniana kvantovoi sistemy $n$ chastits”, Teor. i matem. fizika, 16:2 (1973), 235–246 | MR | Zbl

[15] Zhislin G. M., “Ob uzlakh sobstvennykh funktsii operatora Shredingera”, Uspekhi matem. nauk, XVI:1(97) (1961), 149–152

[16] Sigalov A. G., “Ob osnovnoi matematicheskoi zadache teorii atomnykh spektrov”, Uspekh matem. nauk, XXII:2(134) (1967), 3–20 | MR

[17] Zhislin G. M., “O konechnosti diskretnogo spektra operatora energii otritsatelnykh atomarnykh i molekulyarnykh ionov”, Teor. i matem. fizika, 7:3 (1971), 332–341 | Zbl

[18] Gombash P., Problema mnogikh chastits v kvantovoi mekhanike, IL, M., 1952

[19] Smirnov V. I., Kurs vysshei matematiki, t. 5, Fizmatgiz, M., 1959 | MR

[20] Yakubovskii O. A., “Stroenie rezolventy operatora Shredingera sistemy $n$ chastits s ubyvayuschim parnym vzaimodeistviem”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, SKh, 1970, 146–177