On the point spectrum in the quantum-mechanical many-body problem
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 861-896

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a complete formulation and proof of a number of assertions regarding the point spectrum of the Schrödinger operator of a many-particle system announced earlier by the author. In particular, conditions that the discrete spectrum of this operator be finite are obtained. The results of the work are applicable to certain specific quantum systems, for example, to univalent negative atomic ions and to diatomic molecules. Bibliography: 20 titles.
@article{IM2_1976_10_4_a11,
     author = {D. R. Yafaev},
     title = {On the point spectrum in the quantum-mechanical many-body problem},
     journal = {Izvestiya. Mathematics },
     pages = {861--896},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - On the point spectrum in the quantum-mechanical many-body problem
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 861
EP  - 896
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/
LA  - en
ID  - IM2_1976_10_4_a11
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T On the point spectrum in the quantum-mechanical many-body problem
%J Izvestiya. Mathematics 
%D 1976
%P 861-896
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/
%G en
%F IM2_1976_10_4_a11
D. R. Yafaev. On the point spectrum in the quantum-mechanical many-body problem. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 861-896. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a11/