On some questions in the theory of $\Gamma$-extensions of algebraic number fields. II
Izvestiya. Mathematics, Tome 10 (1976) no. 4, pp. 675-685
Cet article a éte moissonné depuis la source Math-Net.Ru
The space of all $\Gamma$-extensions of a given algebraic number field is considered. The behavior of certain invariants of $\Gamma$-extensions as functions on this space is studied by methods of commutative algebra. Bibliography: 4 titles.
@article{IM2_1976_10_4_a0,
author = {V. A. Babaitsev},
title = {On some questions in the theory of $\Gamma$-extensions of algebraic number {fields.~II}},
journal = {Izvestiya. Mathematics},
pages = {675--685},
year = {1976},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/}
}
V. A. Babaitsev. On some questions in the theory of $\Gamma$-extensions of algebraic number fields. II. Izvestiya. Mathematics, Tome 10 (1976) no. 4, pp. 675-685. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/
[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[2] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 167–327
[3] Babaitsev V. A., “O nekotorykh voprosakh teorii $\Gamma$-rasshirenii polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 40 (1976), 477–487
[4] Greenberg R., “The Iwasawa invariants of $\Gamma$-extensions of a fixed number field”, Amer. J. Math., XCV:1 (1973), 204–214 | DOI | MR