On some questions in the theory of $\Gamma$-extensions of algebraic number fields.~II
Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 675-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space of all $\Gamma$-extensions of a given algebraic number field is considered. The behavior of certain invariants of $\Gamma$-extensions as functions on this space is studied by methods of commutative algebra. Bibliography: 4 titles.
@article{IM2_1976_10_4_a0,
     author = {V. A. Babaitsev},
     title = {On some questions in the theory of $\Gamma$-extensions of algebraic number {fields.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {675--685},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/}
}
TY  - JOUR
AU  - V. A. Babaitsev
TI  - On some questions in the theory of $\Gamma$-extensions of algebraic number fields.~II
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 675
EP  - 685
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/
LA  - en
ID  - IM2_1976_10_4_a0
ER  - 
%0 Journal Article
%A V. A. Babaitsev
%T On some questions in the theory of $\Gamma$-extensions of algebraic number fields.~II
%J Izvestiya. Mathematics 
%D 1976
%P 675-685
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/
%G en
%F IM2_1976_10_4_a0
V. A. Babaitsev. On some questions in the theory of $\Gamma$-extensions of algebraic number fields.~II. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 675-685. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a0/

[1] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[2] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 167–327

[3] Babaitsev V. A., “O nekotorykh voprosakh teorii $\Gamma$-rasshirenii polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 40 (1976), 477–487

[4] Greenberg R., “The Iwasawa invariants of $\Gamma$-extensions of a fixed number field”, Amer. J. Math., XCV:1 (1973), 204–214 | DOI | MR