Imbedding theorems and geometric inequalities
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 615-638.

Voir la notice de l'article provenant de la source Math-Net.Ru

Imbedding theorems for Sobolev spaces with a symmetric norm are established. In particular, the results obtained lead to new imbedding theorems for Orlich–Sobolev spaces. The proof of the basic results is based on geometric inequalities of the type of the classical Brunn–Minkovskii inequality. Bibliography: 30 titles.
@article{IM2_1976_10_3_a7,
     author = {V. S. Klimov},
     title = {Imbedding theorems and geometric inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {615--638},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a7/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Imbedding theorems and geometric inequalities
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 615
EP  - 638
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a7/
LA  - en
ID  - IM2_1976_10_3_a7
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Imbedding theorems and geometric inequalities
%J Izvestiya. Mathematics 
%D 1976
%P 615-638
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a7/
%G en
%F IM2_1976_10_3_a7
V. S. Klimov. Imbedding theorems and geometric inequalities. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 615-638. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a7/

[1] Mazya V. G., “Klassy mnozhestv i mer, svyazannye s teoremami vlozheniya”, Teoremy vlozheniya i ikh prilozheniya (Tr. simpoziuma po teoremam vlozheniya, Baku, 1966), M., 1970, 142–159

[2] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, Leningrad, 1950

[3] Ioffe A. D., “$B$-prostranstva, porozhdaemye vypuklymi integrantami, i mnogomernye variatsionnye zadachi”, Dokl. AN SSSR, 195:5 (1970), 1018–1021 | MR | Zbl

[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[5] Semenov E. M., “Teoremy vlozheniya dlya banakhovykh prostranstv izmerimykh funktsii”, Dokl. AN SSSR, 156:6 (1964), 1292–1295 | Zbl

[6] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[8] Klimov V. S., “Teoremy vlozheniya i promezhutochnye prostranstva Kalderona”, Funkts. analiz i ego primeneniya, 8:1 (1974), 79 | MR | Zbl

[9] Klimov V. S., “Izoperimetricheskie neravenstva i teoremy vlozheniya”, Dokl. AN SSSR, 217:2 (1974), 272–275 | MR | Zbl

[10] Zabreiko P. P., “Idealnye prostranstva funktsii. I”, Vestnik Yaroslavskogo universiteta, 8 (1974), 12–52 | MR

[11] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[12] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, IL, M., 1966

[13] Buzeman G., Vypuklye poverkhnosti, Nauka, M., 1964 | MR

[14] Arkin V. I., Levin V. L., “Vypuklost znachenii vektornykh integralov, teoremy izmerimogo vybora i variatsionnye zadachi”, Uspekhi matem. nauk, 27:3 (1972), 21–77 | MR | Zbl

[15] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[16] Kalderon A. P., “Promezhutochnye prostranstva i interpolyatsiya. Kompleksnyi metod”, Matematika, 9:3 (1965), 56–129

[17] Kronrod A. S., “O funktsiyakh dvukh peremennykh”, Uspekhi matem. nauk, V:1 (1950), 24–134 | MR

[18] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975

[19] Khardi G. G., Littlvud Dzh. E., Polna G., Neravenstva, IL, M., 1948

[20] Klimov V. S., “Teoremy vlozheniya dlya prostranstv Orlicha i ikh prilozheniya k kraevym zadacham”, Sib. matem. zh., 13:2 (1972), 334–348 | MR | Zbl

[21] Dinghas A., “Demonstration du théorème de Brunn–Minkowski pour les families continués d'ensembles”, C. R. Acad. Sci. (Paris), 239 (1954), 605–607 | MR | Zbl

[22] Kufarev B. P., Nikulina N. G., “Mera Lebega podmnozhestv evklidova prostranstva kak starshaya variatsiya funktsii-rasstoyaniya do zamknutogo mnozhestva”, Dokl. AN SSSR, 160:5 (1965), 1004–1006 | MR | Zbl

[23] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[24] Rozenfeld E. A., “Ob usloviyakh vlozhimosti prostranstva $\mathring{W}^1_f(\Omega)$ v prostranstvo nepreryvnykh funktsii”, Trudy MEI, 146 (1972), 142–154 | MR

[25] Lu Ven-tuan, “K teoremam vlozheniya dlya prostranstv funktsii s chastnymi proizvodnymi, summiruemymi s razlichnymi stepenyami”, Vestnik LGU, 7:2 (1961), 23–27 | MR

[26] Pokhozhaev S. I., “O teoreme vlozheniya Soboleva v sluchae $pl=n$”, Dokl. nauchno-tekhn. konf. energet. instituta, sektsiya matematiki, 1965, 158–170

[27] Trudinger N. J., “On imbeddings into Orlicz spaces and some applications”, J. Math. mech., 17:5 (1967), 473–483 | MR | Zbl

[28] Trudinger N. J., “An imbedding theorem for $H^0(\mathfrak G, \Omega)$ space”, Stud. math., 50:1 (1974), 17–30 | MR | Zbl

[29] Rabinovich L. B., “O nekotorykh teoremakh vlozheniya v prostranstvakh Orlicha”, Izv. vuzov, Matematika, 1968, no. 9, 78–86

[30] Gelman I. V., “Teoremy vlozheniya dlya nekotorykh lineinykh normirovannykh prostranstv”, Izv. vuzov, Matematika, 1960, no. 4, 55–66 | MR | Zbl