Harmonic analysis on Riemannian symmetric spaces of negative curvature and
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 535-563
Voir la notice de l'article provenant de la source Math-Net.Ru
Harmonic analysis on a Riemannian symmetric space can be connected with the study of a nonstationary system of equations that has been constructed with respect to the ring of Laplace operators. The scattering theory for this system generalizes the scattering theory for hyperbolic equations constructed by Lax and Phillips. The paper contains a series of new spectral theorems generalizing the Harish–Chandra theorem and a formulation of a causality principle for scattering operators.
Bibliography: 23 titles.
@article{IM2_1976_10_3_a5,
author = {M. A. Semenov-Tian-Shansky},
title = {Harmonic analysis on {Riemannian} symmetric spaces of negative curvature and},
journal = {Izvestiya. Mathematics },
pages = {535--563},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a5/}
}
M. A. Semenov-Tian-Shansky. Harmonic analysis on Riemannian symmetric spaces of negative curvature and. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 535-563. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a5/