Representations of partially ordered sets over commutative rings
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 497-514
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work a criterion is given for the finiteness of the number of indecomposable representations of partially ordered sets over an arbitrary commutative ring. Determination of finiteness is reduced to solving a matrix problem.
Bibliography: 8 titles.
@article{IM2_1976_10_3_a3,
author = {V. V. Plakhotnik},
title = {Representations of partially ordered sets over commutative rings},
journal = {Izvestiya. Mathematics },
pages = {497--514},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a3/}
}
V. V. Plakhotnik. Representations of partially ordered sets over commutative rings. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 497-514. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a3/