On some questions in the theory of $\Gamma$-extensions of algebraic number fields
Izvestiya. Mathematics, Tome 10 (1976) no. 3, pp. 453-462
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary $\Gamma$-extension of an algebraic number field the projective limit of the $S$-units with respect to the norm is treated. Questions connected with the definition of its structure are studied. Bibliography: 6 titles.
@article{IM2_1976_10_3_a1,
author = {V. A. Babaitsev},
title = {On some questions in the theory of $\Gamma$-extensions of algebraic number fields},
journal = {Izvestiya. Mathematics},
pages = {453--462},
year = {1976},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a1/}
}
V. A. Babaitsev. On some questions in the theory of $\Gamma$-extensions of algebraic number fields. Izvestiya. Mathematics, Tome 10 (1976) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a1/
[1] Iwasawa K., “On $Z_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl
[2] Shafarevich I. R., Dzeta-funktsiya, preprint VTs MGU, M., 1969
[3] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36 (1972), 267–327 | MR
[4] Kuzmin L. V., “Gomologii prokonechnykh grupp, multiplikator Shura i teoriya polei klassov”, Izv. AN SSSR. Ser. matem., 33 (1969), 1220–1254 | MR
[5] Greenberg R., “The Iwasawa invariants of $\Gamma$-extensions of a fixed number field”, Amer. J. Math., XCV:1 (1973), 204–214 | DOI | MR
[6] Artin E., Tate J., Class field theory, Harvard, 1961