Convolution integral operators on a~quadrant with discontinuous symbols
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 371-392
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are obtained for convolution integral operators on a quadrant with discontinuous symbols to be Noetherian in $L_p$-spaces and in Sobolev–Slobodeckii spaces. The algebra generated by these operators is studied, and a regularizer is constructed in the case of continuity of the symbol.
Bibliography: 18 titles.
@article{IM2_1976_10_2_a8,
author = {R. V. Duduchava},
title = {Convolution integral operators on a~quadrant with discontinuous symbols},
journal = {Izvestiya. Mathematics },
pages = {371--392},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/}
}
R. V. Duduchava. Convolution integral operators on a~quadrant with discontinuous symbols. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 371-392. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/