Convolution integral operators on a~quadrant with discontinuous symbols
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 371-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for convolution integral operators on a quadrant with discontinuous symbols to be Noetherian in $L_p$-spaces and in Sobolev–Slobodeckii spaces. The algebra generated by these operators is studied, and a regularizer is constructed in the case of continuity of the symbol. Bibliography: 18 titles.
@article{IM2_1976_10_2_a8,
     author = {R. V. Duduchava},
     title = {Convolution integral operators on a~quadrant with discontinuous symbols},
     journal = {Izvestiya. Mathematics },
     pages = {371--392},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/}
}
TY  - JOUR
AU  - R. V. Duduchava
TI  - Convolution integral operators on a~quadrant with discontinuous symbols
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 371
EP  - 392
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/
LA  - en
ID  - IM2_1976_10_2_a8
ER  - 
%0 Journal Article
%A R. V. Duduchava
%T Convolution integral operators on a~quadrant with discontinuous symbols
%J Izvestiya. Mathematics 
%D 1976
%P 371-392
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/
%G en
%F IM2_1976_10_2_a8
R. V. Duduchava. Convolution integral operators on a~quadrant with discontinuous symbols. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 371-392. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a8/

[1] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, Uspekhi matem. nauk, 13:5 (1958), 3–120 | MR | Zbl

[2] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl

[3] Gokhberg I. Ts., Krupnik N. Ya., “Ob algebre, porozhdennoi teplitsevymi matratsami”, Funkts. analiz i ego prilozh., 3:2 (1969), 46–56 | MR | Zbl

[4] Simonenko I. B., “Operatory svertki v konusakh”, Matem. sb., 74(116) (1967), 298–313 | MR | Zbl

[5] Duglas R. D., Khouv R., “O $C^*$-algebrakh teplitsevykh operatorov na kvadrante”, Matematika, 17:5 (1973), 3–16 | MR

[6] Simonenko I. B., “Ob operatorakh mnogomernykh diskretnykh svertok”, Matem. issledov., Kishinev, 3:1 (1968), 108–122 | MR | Zbl

[7] Malyshev V. A., “Uravneniya Vinera–Khopfa v kvadrante, diskretnye gruppy i avtomorfnye funktsii”, Matem. sb., 84 (1971), 499–525 | Zbl

[8] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[9] Pilidi V. S., “Lokalnyi printsip v teorii lineinykh operatornykh uravnenii tipa bisingulyarnykh integralnykh uravnenii”, Matem. analiz i ego prilozh., t. III, Rostovskii-na-Donu universitet, 1971, 81–105 | MR | Zbl

[10] Duduchava R. V., “Ob integralnykh operatorakh Vinera–Khopfa”, Mathem. Nach., 65:1 (1975), 58–82

[11] Duduchava R. V., “Integralnye operatory Vinera–Khopfa s razryvnymi simvolami”, Dokl. AN SSSR, 211:2 (1973), 277–280 | Zbl

[12] Hirschman I. I., “On multiplier transformations”, Duke Mathem. J., 26 (1959), 221–242 | DOI | MR | Zbl

[13] Duduchava R. V., “Diskretnye operatory Vinera–Khopfa v prostranstvakh s vesom”, Soobsch. AN GruzSSR, 67:1 (1972), 17–20 | Zbl

[14] Madzhenes E., “Interpolyatsionnye prostranstva i uravneniya v chastnykh proizvodnykh”, Uspekhi matem. nauk, 21:2 (1966), 169–218 | MR

[15] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[17] Zigmund A., Trigonometricheskie ryady, t. I, II, Mir, M., 1965 | MR

[18] Simonenko I. B., “Novyi obschii metod issledovaniya lineinykh operatornykh uravnenii tipa singulyarnykh integralnykh uravnenii. I”, Izv. AN SSSR. Ser. matem., 29 (1965), 567–586 | MR | Zbl