On the topological dimension of the essential boundary of polynomially convex domains
Izvestiya. Mathematics, Tome 10 (1976) no. 2, pp. 445-450
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct an example of a polynomially convex closed domain whose Shilov boundary is zero-dimensional. Bibliography: 4 titles.
@article{IM2_1976_10_2_a12,
author = {S. N. Bychkov},
title = {On the topological dimension of the essential boundary of polynomially convex domains},
journal = {Izvestiya. Mathematics},
pages = {445--450},
year = {1976},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/}
}
S. N. Bychkov. On the topological dimension of the essential boundary of polynomially convex domains. Izvestiya. Mathematics, Tome 10 (1976) no. 2, pp. 445-450. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/
[1] Rudin W., Conference in complex analysis, Tulon, 1965
[2] Vitushkin A. G., “Ob odnoi zadache V. Rudina”, Dokl. AN SSSR, 213:1 (1973), 14–15 | Zbl
[3] Doeqier F., Grauert H., “Levishes Problem and Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten”, Math. Ann., 140 (1960), 94–123 | DOI | MR
[4] Stolzenberg G., “Polynomyally and rationally convex sets”, Acta Math., 109:3 (1963), 259–289 | DOI | MR | Zbl