On the topological dimension of the essential boundary of polynomially convex domains
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 445-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a polynomially convex closed domain whose Shilov boundary is zero-dimensional. Bibliography: 4 titles.
@article{IM2_1976_10_2_a12,
     author = {S. N. Bychkov},
     title = {On the topological dimension of the essential boundary of polynomially convex domains},
     journal = {Izvestiya. Mathematics },
     pages = {445--450},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/}
}
TY  - JOUR
AU  - S. N. Bychkov
TI  - On the topological dimension of the essential boundary of polynomially convex domains
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 445
EP  - 450
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/
LA  - en
ID  - IM2_1976_10_2_a12
ER  - 
%0 Journal Article
%A S. N. Bychkov
%T On the topological dimension of the essential boundary of polynomially convex domains
%J Izvestiya. Mathematics 
%D 1976
%P 445-450
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/
%G en
%F IM2_1976_10_2_a12
S. N. Bychkov. On the topological dimension of the essential boundary of polynomially convex domains. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 445-450. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a12/

[1] Rudin W., Conference in complex analysis, Tulon, 1965

[2] Vitushkin A. G., “Ob odnoi zadache V. Rudina”, Dokl. AN SSSR, 213:1 (1973), 14–15 | Zbl

[3] Doeqier F., Grauert H., “Levishes Problem and Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten”, Math. Ann., 140 (1960), 94–123 | DOI | MR

[4] Stolzenberg G., “Polynomyally and rationally convex sets”, Acta Math., 109:3 (1963), 259–289 | DOI | MR | Zbl