Good reduction of two-dimensional Abelian varieties
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that there does not exist a two-dimensional abelian variety defined over $\mathbf Q$ and having everywhere good reduction. Bibliography: 3 titles.
@article{IM2_1976_10_2_a1,
     author = {V. A. Abrashkin},
     title = {Good reduction of two-dimensional {Abelian} varieties},
     journal = {Izvestiya. Mathematics },
     pages = {245--254},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Good reduction of two-dimensional Abelian varieties
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 245
EP  - 254
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/
LA  - en
ID  - IM2_1976_10_2_a1
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Good reduction of two-dimensional Abelian varieties
%J Izvestiya. Mathematics 
%D 1976
%P 245-254
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/
%G en
%F IM2_1976_10_2_a1
V. A. Abrashkin. Good reduction of two-dimensional Abelian varieties. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/

[1] Teit Dzh., “$p$-delimye gruppy”, Matematika, 13:2 (1969), 3–25 | MR

[2] Teit Dzh., Oort F., “Skhemy grupp prostogo poryadka”, Matematika, 16:1 (1972), 165–183 | MR

[3] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77 (1955), 134–176 | DOI | MR | Zbl