Good reduction of two-dimensional Abelian varieties
Izvestiya. Mathematics, Tome 10 (1976) no. 2, pp. 245-254
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we prove that there does not exist a two-dimensional abelian variety defined over $\mathbf Q$ and having everywhere good reduction. Bibliography: 3 titles.
@article{IM2_1976_10_2_a1,
author = {V. A. Abrashkin},
title = {Good reduction of two-dimensional {Abelian} varieties},
journal = {Izvestiya. Mathematics},
pages = {245--254},
year = {1976},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/}
}
V. A. Abrashkin. Good reduction of two-dimensional Abelian varieties. Izvestiya. Mathematics, Tome 10 (1976) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a1/
[1] Teit Dzh., “$p$-delimye gruppy”, Matematika, 13:2 (1969), 3–25 | MR
[2] Teit Dzh., Oort F., “Skhemy grupp prostogo poryadka”, Matematika, 16:1 (1972), 165–183 | MR
[3] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77 (1955), 134–176 | DOI | MR | Zbl