The Tannaka--Artin problem and reduced $K$-theory
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve the old Tannaka–Artin problem, which states the following in modern terminology: is the reduced Whitehead group $SK_1(A)$ of a finite-dimensional division algebra $A$ trivial?
We work out a method for computing the group $SK_1(A)$ based on a reduction to the computation of a group of special protective conorms – a new object in field theory – and we discover unexpected connections with number theory.
Bibliography: 23 titles.
@article{IM2_1976_10_2_a0,
author = {V. P. Platonov},
title = {The {Tannaka--Artin} problem and reduced $K$-theory},
journal = {Izvestiya. Mathematics },
pages = {211--243},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/}
}
V. P. Platonov. The Tannaka--Artin problem and reduced $K$-theory. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/