The Tannaka--Artin problem and reduced $K$-theory
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the old Tannaka–Artin problem, which states the following in modern terminology: is the reduced Whitehead group $SK_1(A)$ of a finite-dimensional division algebra $A$ trivial? We work out a method for computing the group $SK_1(A)$ based on a reduction to the computation of a group of special protective conorms – a new object in field theory – and we discover unexpected connections with number theory. Bibliography: 23 titles.
@article{IM2_1976_10_2_a0,
     author = {V. P. Platonov},
     title = {The {Tannaka--Artin} problem and reduced $K$-theory},
     journal = {Izvestiya. Mathematics },
     pages = {211--243},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/}
}
TY  - JOUR
AU  - V. P. Platonov
TI  - The Tannaka--Artin problem and reduced $K$-theory
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 211
EP  - 243
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/
LA  - en
ID  - IM2_1976_10_2_a0
ER  - 
%0 Journal Article
%A V. P. Platonov
%T The Tannaka--Artin problem and reduced $K$-theory
%J Izvestiya. Mathematics 
%D 1976
%P 211-243
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/
%G en
%F IM2_1976_10_2_a0
V. P. Platonov. The Tannaka--Artin problem and reduced $K$-theory. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/