The Tannaka--Artin problem and reduced $K$-theory
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the old Tannaka–Artin problem, which states the following in modern terminology: is the reduced Whitehead group $SK_1(A)$ of a finite-dimensional division algebra $A$ trivial? We work out a method for computing the group $SK_1(A)$ based on a reduction to the computation of a group of special protective conorms – a new object in field theory – and we discover unexpected connections with number theory. Bibliography: 23 titles.
@article{IM2_1976_10_2_a0,
     author = {V. P. Platonov},
     title = {The {Tannaka--Artin} problem and reduced $K$-theory},
     journal = {Izvestiya. Mathematics },
     pages = {211--243},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/}
}
TY  - JOUR
AU  - V. P. Platonov
TI  - The Tannaka--Artin problem and reduced $K$-theory
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 211
EP  - 243
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/
LA  - en
ID  - IM2_1976_10_2_a0
ER  - 
%0 Journal Article
%A V. P. Platonov
%T The Tannaka--Artin problem and reduced $K$-theory
%J Izvestiya. Mathematics 
%D 1976
%P 211-243
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/
%G en
%F IM2_1976_10_2_a0
V. P. Platonov. The Tannaka--Artin problem and reduced $K$-theory. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 211-243. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a0/

[1] Burbaki N., Algebra: moduli, koltsa, formy, Nauka, M., 1966 | MR

[2] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[3] Nakayama T., Matsushima Y., “Über die multiplikative Gruppe einer $p$-adischen Divisionsalgebra”, Proc. Imperial Academy of Japan, 19 (1943), 622–628 | DOI | MR | Zbl

[4] Wang S., “On the commutator group of a simple algebra”, Amer. J. Math., 72:2 (1950), 323–334 | DOI | MR | Zbl

[5] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[6] Tits J., “Algebraic and abstract simple groups”, Ann. Math., 80:2 (1964), 313–329 | DOI | MR | Zbl

[7] Harder G., “Eine Bemerkumg zum sehwachen Approximationssatz”, Archiv Math., XIX:5 (1968), 465–472 | DOI | MR

[8] Borel A., Tits J., “Homomorphismes “abstraits” de groupes algebriquas simples”, Ann. Math., 97:3 (1973), 499–571 | DOI | MR | Zbl

[9] Platonov V. P., “Problema silnoi approksimatsii i gipoteza Knezera–Titsa”, Izv. AN SSSR. Ser. matem., 33 (1969), 1211–1220 | MR

[10] Platonov V. P., “Dopolnenie k rabote, Problema silnoi approksimatsii i gipoteza Knezera–Titsa”, Izv. AN SSSR. Ser. matem., 34 (1970), 775–777 | MR | Zbl

[11] Platonov V. P., “O probleme Tannaka–Artina”, Dokl. AN SSSR, 221:5 (1975), 1038–1041 | MR | Zbl

[12] Platonov V. P., “Problema Tannaka–Artina i gruppy proektivnykh konorm”, Dokl. AN SSSR, 222:6 (1975), 1299–1302 | MR | Zbl

[13] Kodama T., “On the commutator group of normal simple algebra”, Mem. Fac. Sci. Kuyshu Univ.(A), 10 (1956), 141–149 ; 4 (1960), 98–103 | MR | Zbl | MR

[14] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969

[15] Bass X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[16] Schilling O. G., “The Theory of Valuations”, Amer. Math. Soc., 17:4 (1950), 1–253 | MR

[17] Serre J.-P., Corps locaus, Paris, 1962

[18] Platonov V. P., Yanchevskii V. I., “O gipoteze Khardera”, Dokl. AN SSSR, 221:4 (1975), 784–787 | MR | Zbl

[19] Deuring M., Algebren, Berlin, 1968 | MR

[20] Dzhekobson N., Teoriya kolets, IL, M., 1947

[21] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[22] Platonov V. P., “Arifmeticheskie i strukturnye problemy v lineinykh algebraicheskikh gruppakh”, Tr. Mezhdunarodnogo matem. kongressa v Vankuvere, t. 2, 1975, 39–44

[23] Platonov V. P., Yanchevskii V. I., “O gipoteze Knezera–Titsa dlya unitarnykh grupp”, Dokl. AN SSSR, 225:1 (1975), 48–52 | MR