Embedding the group $\mathbf B(\infty,n)$ in the group~$\mathbf B(2,n)$
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 181-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for odd $n\geqslant665$ the free periodic group of exponent $n$ with countable number of generators can be isomorphically embedded in the free periodic group of exponent $n$ with two generators. Bibliography: 1 title.
@article{IM2_1976_10_1_a9,
     author = {V. L. Shirvanyan},
     title = {Embedding the group $\mathbf B(\infty,n)$ in the group~$\mathbf B(2,n)$},
     journal = {Izvestiya. Mathematics },
     pages = {181--199},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a9/}
}
TY  - JOUR
AU  - V. L. Shirvanyan
TI  - Embedding the group $\mathbf B(\infty,n)$ in the group~$\mathbf B(2,n)$
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 181
EP  - 199
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a9/
LA  - en
ID  - IM2_1976_10_1_a9
ER  - 
%0 Journal Article
%A V. L. Shirvanyan
%T Embedding the group $\mathbf B(\infty,n)$ in the group~$\mathbf B(2,n)$
%J Izvestiya. Mathematics 
%D 1976
%P 181-199
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a9/
%G en
%F IM2_1976_10_1_a9
V. L. Shirvanyan. Embedding the group $\mathbf B(\infty,n)$ in the group~$\mathbf B(2,n)$. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 181-199. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a9/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl