On the spectral theory for the Sturm--Liouville equation with operator coefficient
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Sturm–Liouville equation with an operator coefficient we study selfadjoint Friedrichs extensions in the space $L_2(H(x),(0,\infty),dx)$. Then we use our results to investigate selfadjoint extensions of the Schrödinger operator in $L_2(\Omega)$, where $\Omega$ is a domain with an infinite boundary, using various boundary conditions. Bibliography: 19 titles.
@article{IM2_1976_10_1_a8,
     author = {P. A. Mishnaevskii},
     title = {On the spectral theory for the {Sturm--Liouville} equation with operator coefficient},
     journal = {Izvestiya. Mathematics },
     pages = {145--180},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/}
}
TY  - JOUR
AU  - P. A. Mishnaevskii
TI  - On the spectral theory for the Sturm--Liouville equation with operator coefficient
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 145
EP  - 180
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/
LA  - en
ID  - IM2_1976_10_1_a8
ER  - 
%0 Journal Article
%A P. A. Mishnaevskii
%T On the spectral theory for the Sturm--Liouville equation with operator coefficient
%J Izvestiya. Mathematics 
%D 1976
%P 145-180
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/
%G en
%F IM2_1976_10_1_a8
P. A. Mishnaevskii. On the spectral theory for the Sturm--Liouville equation with operator coefficient. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/