On the spectral theory for the Sturm--Liouville equation with operator coefficient
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Sturm–Liouville equation with an operator coefficient we study selfadjoint Friedrichs extensions in the space $L_2(H(x),(0,\infty),dx)$. Then we use our results to investigate selfadjoint extensions of the Schrödinger operator in $L_2(\Omega)$, where $\Omega$ is a domain with an infinite boundary, using various boundary conditions.
Bibliography: 19 titles.
@article{IM2_1976_10_1_a8,
author = {P. A. Mishnaevskii},
title = {On the spectral theory for the {Sturm--Liouville} equation with operator coefficient},
journal = {Izvestiya. Mathematics },
pages = {145--180},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/}
}
P. A. Mishnaevskii. On the spectral theory for the Sturm--Liouville equation with operator coefficient. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/