On the spectral theory for the Sturm--Liouville equation with operator coefficient
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Sturm–Liouville equation with an operator coefficient we study selfadjoint Friedrichs extensions in the space $L_2(H(x),(0,\infty),dx)$. Then we use our results to investigate selfadjoint extensions of the Schrödinger operator in $L_2(\Omega)$, where $\Omega$ is a domain with an infinite boundary, using various boundary conditions. Bibliography: 19 titles.
@article{IM2_1976_10_1_a8,
     author = {P. A. Mishnaevskii},
     title = {On the spectral theory for the {Sturm--Liouville} equation with operator coefficient},
     journal = {Izvestiya. Mathematics },
     pages = {145--180},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/}
}
TY  - JOUR
AU  - P. A. Mishnaevskii
TI  - On the spectral theory for the Sturm--Liouville equation with operator coefficient
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 145
EP  - 180
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/
LA  - en
ID  - IM2_1976_10_1_a8
ER  - 
%0 Journal Article
%A P. A. Mishnaevskii
%T On the spectral theory for the Sturm--Liouville equation with operator coefficient
%J Izvestiya. Mathematics 
%D 1976
%P 145-180
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/
%G en
%F IM2_1976_10_1_a8
P. A. Mishnaevskii. On the spectral theory for the Sturm--Liouville equation with operator coefficient. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 145-180. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a8/

[1] Jäger W., “Eingewohnlicher Differentialoperator zweiter Ordnung für Funktionen mit werten in einem Hilbertraum”, Math. Z., 113 (1970), 68–98 | DOI | MR | Zbl

[2] Saito Y., “The Principle of Limiting Absorption for Second-order Differential Equation with Operator-valued Coefficients”, Publ. R. J. M. S., Kyoto Univ., 7 (1972), 581–619 | DOI | MR | Zbl

[3] Saito Y., “Spectral and Scattering Theory For Second-order Differential Operators with Operator-valued Coefficients”, Osaka J. Math., 9 (1972), 463–498 | MR | Zbl

[4] Povzner A. Ya., “O razlozheniyakh po funktsiyam, yavlyayuschikhsya resheniem zadachi rasseyaniya”, Dokl. AN SSSR, 104:3 (1955), 360–363 | MR | Zbl

[5] Murtazin X. X., “O nepreryvnom spektre differentsialnykh operatorov vtorogo poryadka”, Dokl. AN SSSR, 212:6 (1973), 1301–1304 | MR | Zbl

[6] Ramm A. G., “Spektralnye svoistva operatora Shredingera v oblastyakh s beskonechnoi granitsei”, Matem. sb., 66:3 (1965), 321–343 | MR | Zbl

[7] Ramm A. G., “Issledovanie zadachi rasseyaniya v nekotorykh beskonechnykh oblastyakh. I”, Vestnik LGU, ser. matem., mekh. i astronom., 2:7 (1963), 45–66 | MR | Zbl

[8] Ramm A. G., “Issledovanie zadachi rasseyaniya v nekotorykh beskonechnykh oblastyakh. II”, Vestnik LGU, ser. matem., mekh. i astronom., 4:19 (1963), 69–76 | Zbl

[9] Ramm A. G., “Izuchenie funktsii Grina differentsialnogo uravneniya vtorogo poryadka v oblastyakh s beskonechnoi granitsei”, Diff. uravneniya, V:8 (1969), 1509–1516 | MR

[10] Tayoshi T., “The Asymptotic Behavior of the Solutions of $(\Delta+\lambda)u=0$ in a Domain with the Unbounded Boundary”, Publ. R. J. M. S., Kyoto Univ., 8 (1973), 375–391 | DOI | MR

[11] Oden F. M., “Uniqueness Theorems for the Helmholtz Equations in Domain with Infinite Boundaries”, J. Math. and Mech., 12:6 (1963), 857–867 | MR

[12] Goldstein C. J., “Scattering Theory for Elliptic Differential Operators in Unbounded Domains. I”, J. of. Math. Anal. and Applications, 45 (1974), 723–745 | DOI | MR

[13] Vinnik A. A., Eidus D. M., “Ob usloviyakh izlucheniya dlya oblastei s beskonechnymi granitsami”, Dokl. AN SSSR, 214:1 (1974), 19–21 | MR | Zbl

[14] Vinnik A. A., “Printsipy izlucheniya, predelnogo pogloscheniya i predelnoi amplitudy dlya oblastei s beskonechnymi granitsami”, Izv. AN AzSSR, ser. fiz.-tekhn. i matem. nauk, 1974, no. 3, 129–134 | MR | Zbl

[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[16] Landis E. M., “O nekotorykh svoistvakh reshenii ellipticheskikh uravnenii”, Dokl. AN SSSR, 107:5 (1956), 640–643 | MR | Zbl

[17] Jäger W., “Das asymptotische Verhalten von Lösungen eines Typs von Differentialgleiehungen”, Math. Z., 112 (1969), 26–36 | DOI | MR | Zbl

[18] Saito Y., “The Principle of Limiting Absorption for the Non-selfadjoint Schrödinger Operator in $R^N(N\ne 2)$”, Publ. R. J. M. S., Kyoto Univ., 9 (1974), 397–428 | DOI | MR | Zbl

[19] Eidus D. M., “Printsip predelnoi amplitudy”, Uspekhi matem. nauk, XXIV:3 (1969), 91–156 | MR