On a~uniqueness theorem in the theory of functions of several complex variables,
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 111-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove a uniqueness theorem which enables us in particular to show that every solution of a homogeneous equation of convolution type in tube domains in $\mathbf C^n$ can be approximated by linear combinations of solutions of the equation which are exponential polynomials. Bibliography: 9 titles.
@article{IM2_1976_10_1_a6,
     author = {V. V. Napalkov},
     title = {On a~uniqueness theorem in the theory of functions of several complex variables,},
     journal = {Izvestiya. Mathematics },
     pages = {111--126},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a6/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - On a~uniqueness theorem in the theory of functions of several complex variables,
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 111
EP  - 126
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a6/
LA  - en
ID  - IM2_1976_10_1_a6
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T On a~uniqueness theorem in the theory of functions of several complex variables,
%J Izvestiya. Mathematics 
%D 1976
%P 111-126
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a6/
%G en
%F IM2_1976_10_1_a6
V. V. Napalkov. On a~uniqueness theorem in the theory of functions of several complex variables,. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a6/

[1] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[2] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[3] Martineau A., “Distributions et valeurs au bord des fonctions holomorphes”, Proc. Intern. Summer Course on the Theory of Distributions, Lisbon, 1964, 193–326 | MR

[4] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[5] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl

[6] Napalkov V. V., “Uravnenie tipa svertki v trubchatykh oblastyakh $\mathbf C^2$”, Izv. AN SSSR. Ser. matem., 38 (1974), 446–456 | MR | Zbl

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[9] Malgrange B., “Existence et approximation des solution des équations aux derivées partielles et des équations de convolution”, Ann. Inst. Fourier, 6 (1955), 271–354 | MR