On the closure of nonclosed systems of functions of Mittag-Leffler type
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 93-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The closure of a system of functions of Mittag-Leffler type $\{E_\rho(-\lambda_kx;\mu)\}_1^\infty$ ($\operatorname{Re}\lambda_k^\alpha>0$, $1/\rho+1/\alpha=2$) is described in the space $L_{2,\omega}(0,+\infty)$ in the case when the series $$ \sum_{k=1}^\infty\frac{\operatorname{Re}\lambda_k^\alpha}{1+|\lambda_k|^{2\alpha}} $$ is convergent. This result generalizes the well-known theorems of Laurent Schwartz, A. F. Leont'ev and M. M. Dzhrbashyan. Bibliography: 16 titles.
@article{IM2_1976_10_1_a5,
     author = {S. A. Akopyan and I. O. Khachatryan},
     title = {On the closure of nonclosed systems of functions of {Mittag-Leffler} type},
     journal = {Izvestiya. Mathematics },
     pages = {93--110},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/}
}
TY  - JOUR
AU  - S. A. Akopyan
AU  - I. O. Khachatryan
TI  - On the closure of nonclosed systems of functions of Mittag-Leffler type
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 93
EP  - 110
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/
LA  - en
ID  - IM2_1976_10_1_a5
ER  - 
%0 Journal Article
%A S. A. Akopyan
%A I. O. Khachatryan
%T On the closure of nonclosed systems of functions of Mittag-Leffler type
%J Izvestiya. Mathematics 
%D 1976
%P 93-110
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/
%G en
%F IM2_1976_10_1_a5
S. A. Akopyan; I. O. Khachatryan. On the closure of nonclosed systems of functions of Mittag-Leffler type. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/