On the closure of nonclosed systems of functions of Mittag-Leffler type
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 93-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The closure of a system of functions of Mittag-Leffler type $\{E_\rho(-\lambda_kx;\mu)\}_1^\infty$ ($\operatorname{Re}\lambda_k^\alpha>0$, $1/\rho+1/\alpha=2$) is described in the space $L_{2,\omega}(0,+\infty)$ in the case when the series
$$
\sum_{k=1}^\infty\frac{\operatorname{Re}\lambda_k^\alpha}{1+|\lambda_k|^{2\alpha}}
$$
is convergent. This result generalizes the well-known theorems of Laurent Schwartz, A. F. Leont'ev and M. M. Dzhrbashyan.
Bibliography: 16 titles.
@article{IM2_1976_10_1_a5,
author = {S. A. Akopyan and I. O. Khachatryan},
title = {On the closure of nonclosed systems of functions of {Mittag-Leffler} type},
journal = {Izvestiya. Mathematics },
pages = {93--110},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/}
}
TY - JOUR AU - S. A. Akopyan AU - I. O. Khachatryan TI - On the closure of nonclosed systems of functions of Mittag-Leffler type JO - Izvestiya. Mathematics PY - 1976 SP - 93 EP - 110 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/ LA - en ID - IM2_1976_10_1_a5 ER -
S. A. Akopyan; I. O. Khachatryan. On the closure of nonclosed systems of functions of Mittag-Leffler type. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a5/