Finite-dimensional Lie algebras of formal vector fields and characteristic classes of homogeneous foliations
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 55-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In [5], I. M. Gel'fand and the author computed the cohomology of the Lie algebra $W_n$ of formal vector fields in $n$-dimensional space. The present article is devoted to the study of homomorphisms $H^*(W_n;\mathbf R)\to H^*(\mathfrak g;\mathbf R)$ induced by imbeddings of finite-dimensional subalgebras in $W_n$. We show that there exist elements of $H^*(W_n;\mathbf R)$ which are annihilated by any such homomorphism. On the other hand, we show that the image of the cohomology homomorphism induced by the well-known embedding $\mathfrak{sl}(n+1,\mathbf R)\to W_n$ has dimension $2^{n-1}+1$. The results are applied to characteristic classes of foliations.
Bibliography: 9 titles.
@article{IM2_1976_10_1_a3,
author = {D. B. Fuchs},
title = {Finite-dimensional {Lie} algebras of formal vector fields and characteristic classes of homogeneous foliations},
journal = {Izvestiya. Mathematics },
pages = {55--62},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a3/}
}
TY - JOUR AU - D. B. Fuchs TI - Finite-dimensional Lie algebras of formal vector fields and characteristic classes of homogeneous foliations JO - Izvestiya. Mathematics PY - 1976 SP - 55 EP - 62 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a3/ LA - en ID - IM2_1976_10_1_a3 ER -
D. B. Fuchs. Finite-dimensional Lie algebras of formal vector fields and characteristic classes of homogeneous foliations. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a3/