On the Gorenstein property of the ring of invariants of a~Gorenstein ring
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give necessary and sufficient conditions allowing us to tell whether or not the ring of invariants of a Gorenstein ring is Gorenstein. Bibliography: 8 titles.
@article{IM2_1976_10_1_a2,
     author = {V. A. Khinich},
     title = {On the {Gorenstein} property of the ring of invariants of {a~Gorenstein} ring},
     journal = {Izvestiya. Mathematics },
     pages = {47--53},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a2/}
}
TY  - JOUR
AU  - V. A. Khinich
TI  - On the Gorenstein property of the ring of invariants of a~Gorenstein ring
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 47
EP  - 53
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a2/
LA  - en
ID  - IM2_1976_10_1_a2
ER  - 
%0 Journal Article
%A V. A. Khinich
%T On the Gorenstein property of the ring of invariants of a~Gorenstein ring
%J Izvestiya. Mathematics 
%D 1976
%P 47-53
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a2/
%G en
%F IM2_1976_10_1_a2
V. A. Khinich. On the Gorenstein property of the ring of invariants of a~Gorenstein ring. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 47-53. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a2/

[1] Grothendieck A., Local Cohomology, Springer Lecture Notes in Mathematics, 41, 1967 | MR | Zbl

[2] Hochster M., Eagon J. A., “Cohen-Macaulay Rings, Invariant Theory and the Generic Perfection of Determinantal Loci”, Amer. J. Math., 93:4 (1971), 1020–1056 | DOI | MR

[3] Raynand M., Anneaux locaux henséliennes, Springer Lecture Notes in Mathematics, 169, 1971

[4] Cepp Zh.-P., “Lokalnaya algebra i teoriya kratnostei”, Matematika, 7:5 (1963), 3–93

[5] Singh B., “Invariants of finite group acting on local $UFD$”, Journal of the Indian Mathematical Society, 34 (1970), 31–38 | MR

[6] Watanabe K., “Certain invariant subrings are Gorenstein. I”, Osaka Journal of Mathematics, 11 (1974), 1–8 | MR | Zbl

[7] Watanabe K., “Certain invariant subrings are Gorenstein. II”, Osaka Journal of Mathematics, 11 (1974), 379–388 | MR | Zbl

[8] Watanabe K., Ishikawa T., Tachibana S., Otsuka K., “On tensor product of Gorenstein rings”, Journal of Mathematics of Kyoto University, 9:3 (1969), 413–424 | MR