Multiple trigonometric sums
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 200-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a multidimensional analog of I. M. Vinogradov's theorem on the mean value of the modulus of a trigonometric sum. We illustrate the possibility of using our theorem to estimate multiple trigonometric sums with the example of the simplest type of multiple trigonometric sums. Bibliography: 9 titles.
@article{IM2_1976_10_1_a10,
     author = {G. I. Arkhipov and V. N. Chubarikov},
     title = {Multiple trigonometric sums},
     journal = {Izvestiya. Mathematics },
     pages = {200--210},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a10/}
}
TY  - JOUR
AU  - G. I. Arkhipov
AU  - V. N. Chubarikov
TI  - Multiple trigonometric sums
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 200
EP  - 210
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a10/
LA  - en
ID  - IM2_1976_10_1_a10
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%A V. N. Chubarikov
%T Multiple trigonometric sums
%J Izvestiya. Mathematics 
%D 1976
%P 200-210
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a10/
%G en
%F IM2_1976_10_1_a10
G. I. Arkhipov; V. N. Chubarikov. Multiple trigonometric sums. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 200-210. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a10/