Linear groups generated by transvections
Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 25-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we classify the irreducible linear groups generated by transvections over a finite field of characteristic $p\geqslant3$ Bibliography: 12 titles.
@article{IM2_1976_10_1_a1,
     author = {A. E. Zalesskii and V. N. Serezhkin},
     title = {Linear groups generated by transvections},
     journal = {Izvestiya. Mathematics },
     pages = {25--46},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a1/}
}
TY  - JOUR
AU  - A. E. Zalesskii
AU  - V. N. Serezhkin
TI  - Linear groups generated by transvections
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 25
EP  - 46
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a1/
LA  - en
ID  - IM2_1976_10_1_a1
ER  - 
%0 Journal Article
%A A. E. Zalesskii
%A V. N. Serezhkin
%T Linear groups generated by transvections
%J Izvestiya. Mathematics 
%D 1976
%P 25-46
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a1/
%G en
%F IM2_1976_10_1_a1
A. E. Zalesskii; V. N. Serezhkin. Linear groups generated by transvections. Izvestiya. Mathematics , Tome 10 (1976) no. 1, pp. 25-46. http://geodesic.mathdoc.fr/item/IM2_1976_10_1_a1/

[1] Dickson L. E., Linear groups with an exposition of the Galois field theory, Teubner, Leipzig, 1901 | Zbl

[2] Mitchell H. H., “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12 (1911), 207–242 | DOI | MR | Zbl

[3] Hartley R. W., “Determination of the ternary collineation groups whose coefficients Lie in the $GF(2^n)$”, Ann. Math., 27 (1925), 140–158 | DOI | MR | Zbl

[4] Mitchell H. H., “The subgroups of the quaternary abelian linear group”, Trans. Amer. Math. Soc., 15 (1914), 379–396 | DOI | MR | Zbl

[5] Mclaughlin J., “Some subgroups of $SL_n(F_2)$”, Ill. J. Math., 13:1 (1969), 108–115 | MR | Zbl

[6] Mclaughlin J., “Some groups generated by transvections”, Arch. Math., 18:4 (1967), 364–368 | DOI | MR | Zbl

[7] Aschbacher M., “A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5”, Pacific J. Math., 47:1 (1973), 5–26 | MR | Zbl

[8] Wielandt H., Finite permutation groups, Acad. Press, N. Y., L., 1964 | MR | Zbl

[9] Thompson J. G., “Quadratic pairs”, Actes Congres intern. math., tome I, 1970, 375–376 | MR

[10] Kegel O., “Uber einfache, local endliche Gruppen”, Math. Z., 95 (1967), 169–195 | DOI | MR | Zbl

[11] Kegel O., Wehrfritz B. A. F., Locally finite groups, Amsterdam, London, New York, 1973 | MR

[12] Dieudonne I., La geomeric des groupes classiques, Springer, Berlin, 1955