Convergence of series connected with stationary sequences
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1297-1321.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence almost everywhere of series $\sum a_k\xi_k$ is studied, where $\{\xi_k\}$ is a wide-sense stationary sequence (or a quasi-stationary sequence). Sufficient conditions are obtained for convergence of the series, which are also necessary in the class of all sequences $\{\xi_k\}$ having a given rate of decrease of the correlation function. Analogous results are also valid for integrals of the type $\int_1^\infty a(t)\xi(t)\,dt$ where $\xi(t)$ is a wide-sense stationary process. Bibliography: 12 titles.
@article{IM2_1975_9_6_a7,
     author = {V. F. Gaposhkin},
     title = {Convergence of series connected with stationary sequences},
     journal = {Izvestiya. Mathematics },
     pages = {1297--1321},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a7/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - Convergence of series connected with stationary sequences
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1297
EP  - 1321
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a7/
LA  - en
ID  - IM2_1975_9_6_a7
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T Convergence of series connected with stationary sequences
%J Izvestiya. Mathematics 
%D 1975
%P 1297-1321
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a7/
%G en
%F IM2_1975_9_6_a7
V. F. Gaposhkin. Convergence of series connected with stationary sequences. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1297-1321. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a7/

[1] Menchoff D. E., “Sur les séries des fonctiones orthogonales”, Fund. Math., 10 (1927), 375–400

[2] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[3] Aleksin G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963

[4] Verbitskaya I. N., “Ob usloviyakh primenimosti usilennogo zakona bolshikh chisel k statsionarnym v shirokom smysle protsessam”, Teoriya veroyatnostei i ee primeneniya, XI:4 (1966), 715–720 | MR | Zbl

[5] Blanc-Lapierre A., Tortrat A., “Sur la loi forté des grandes nombres”, Compt. Rend. Acad. Sci., Paris, 267A (1968), 740–743 | MR

[6] Gaposhkin V. F., “K usilennomu zakonu bolshikh chisel dlya statsionarnykh v shirokom smysle protsessov i posledovatelnostei”, Teoriya veroyatnostei i ee primeneniya, XVII:2 (1973), 388–392

[7] Serfling R., “Convergence properties of $S_n$ under moment restrictiones”, Ann. Math. Statist., 41:4 (1972), 1235–1248 | DOI | MR

[8] Kac M., Salem R., Zygmund A., “A gap theorem”, Trans. Amer. Math. Soc., 63 (1948), 235–248 | DOI | MR

[9] Szep A., “A non-orthogonal Menchoff–Rademacher theorem”, Acta Scient. Math., 33:3,4 (1972), 231–234 | MR

[10] Zigmund A., Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[11] Gaposhkin V. F., “O ryadakh, svyazannykh so statsionarnymi posledovatelnostyami”, Uspekhi matem. nauk, XXIX:3 (1974), 191–192

[12] Petrov V. V., “Ob usilennom zakone bolshikh chisel dlya statsionarnoi posledovatelnosti”, Dokl. AN SSSR, 213:1 (1973), 42–44 | Zbl