On differential-operator equations of second order
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1241-1277.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article offers proof of general comparison theorems by which bounded and stable solutions can be isolated for second-order equations; bounded solutions are also isolated for some second-order systems. Bibliography: 4 titles.
@article{IM2_1975_9_6_a5,
     author = {V. G. Limanskii},
     title = {On differential-operator equations of second order},
     journal = {Izvestiya. Mathematics },
     pages = {1241--1277},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a5/}
}
TY  - JOUR
AU  - V. G. Limanskii
TI  - On differential-operator equations of second order
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1241
EP  - 1277
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a5/
LA  - en
ID  - IM2_1975_9_6_a5
ER  - 
%0 Journal Article
%A V. G. Limanskii
%T On differential-operator equations of second order
%J Izvestiya. Mathematics 
%D 1975
%P 1241-1277
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a5/
%G en
%F IM2_1975_9_6_a5
V. G. Limanskii. On differential-operator equations of second order. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1241-1277. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a5/

[1] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[3] Limanskii V. G., “Kachestvennoe issledovanie differentsialnykh uravnenii pervogo poryadka ustoichivogo tipa s peremennym zapazdyvaniem”, Izv. AN SSSR. Ser. matem., 34 (1970), 156–174 | MR | Zbl

[4] Myshkis A. D., “Zamechanie k state G. M. Zhdanova “O priblizhennom reshenii sistemy differentsialnykh uravnenii pervogo poryadka s zapazdyvayuschim argumentom””, Uspekhi matem. nauk, 16:2 (1961), 131–133 | MR | Zbl