Irreducible representations of modular Lie algebras
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1169-1187

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the theory of finite schemes, we study the rank of the universal enveloping algebra over a field of positive characteristic. We determine the maximal degree of an irreducible representation of a graded Lie algebra of Cartan type $W_1$ or $W_2$. Bibliography: 10 titles.
@article{IM2_1975_9_6_a1,
     author = {A. A. Mil'ner},
     title = {Irreducible representations of modular {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1169--1187},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a1/}
}
TY  - JOUR
AU  - A. A. Mil'ner
TI  - Irreducible representations of modular Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1169
EP  - 1187
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a1/
LA  - en
ID  - IM2_1975_9_6_a1
ER  - 
%0 Journal Article
%A A. A. Mil'ner
%T Irreducible representations of modular Lie algebras
%J Izvestiya. Mathematics 
%D 1975
%P 1169-1187
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a1/
%G en
%F IM2_1975_9_6_a1
A. A. Mil'ner. Irreducible representations of modular Lie algebras. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1169-1187. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a1/