On the basicity of derived chains
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 1119-1154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the definition of a derived chain, which generalizes the corresponding concept introduced by M. V. Keldysh and which corresponds, for example, to problems more general than the Cauchy problem. It is shown that subspaces consisting of derived chains form a Riesz basis. The class of derived chains considered includes those which correspond to certain boundary value problems on an infinite interval with the condition of convergence to zero of a vector-valued function, that depends on $t$, as $t\to\infty$. The operator-valued functions with respect to whose root vectors the derived chains are formed are similar to the Keldysh operator bundles. Bibliography: 20 titles.
@article{IM2_1975_9_5_a8,
     author = {G. V. Radzievskii},
     title = {On the basicity of derived chains},
     journal = {Izvestiya. Mathematics },
     pages = {1119--1154},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a8/}
}
TY  - JOUR
AU  - G. V. Radzievskii
TI  - On the basicity of derived chains
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1119
EP  - 1154
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a8/
LA  - en
ID  - IM2_1975_9_5_a8
ER  - 
%0 Journal Article
%A G. V. Radzievskii
%T On the basicity of derived chains
%J Izvestiya. Mathematics 
%D 1975
%P 1119-1154
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a8/
%G en
%F IM2_1975_9_5_a8
G. V. Radzievskii. On the basicity of derived chains. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 1119-1154. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a8/

[1] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | Zbl

[2] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, Uspekhi matem. nauk, 26:4 (1971), 15–41 | MR | Zbl

[3] Radzievskii G. V., “Kratkaya polnota kornevykh vektorov puchka M. V. Keldysha, vozmuschennogo analiticheskoi v kruge operator-funktsiei”, Matem. sb., 91:3 (1973), 310–335 | MR | Zbl

[4] Radzievskii G. V., “Ob odnom metode dokazatelstva polnoty kornevykh vektorov operator-funktsii”, Dokl. AN SSSR, 214:2 (1974), 291–294 | MR | Zbl

[5] Krein M. G., Langer G. K., “K teorii kvadratichnykh puchkov samosopryazhennykh operatorov”, Dokl. AN SSSR, 154:6 (1964), 1258–1261 | MR | Zbl

[6] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh teorii dempfirovannykh kolebanii kontinuumov”, Tr. Mezhdunarodnogo simpoziuma po primeneniyu teorii funktsii kompleksnogo peremennogo v mekhanike sploshnoi sredy, Nauka, 1965

[7] Markus A. S., “O razlozhenii po kornevym vektoram slabo vozmuschennogo samosopryazhennogo operatora”, Dokl. AN SSSR, 142:3 (1962), 538–541 | MR | Zbl

[8] Dzhabar-Zade R. M., “O razlozhenii po sobstvennym i prisoedinennym elementam operatora, polinomialno zavisyaschego ot $\lambda$”, Uchenye zapiski Azerb. GU, ser. fiz.-matem. nauk, 3, 1964, 75–81

[9] Vizitei V. N., Markus A. S., “O skhodimosti kratnykh razlozhenii po sisteme sobstvennykh i prisoedinennykh vektorov operatornogo puchka”, Matem. sb., 66:2 (1965), 287–320 | MR | Zbl

[10] Allakhverdiev Dzh. E., “O nesamosopryazhennykh operatorakh, ratsionalno zavisyaschikh ot spektralnogo parametra”, Dokl. AN SSSR, 186:4 (1969), 743–746 | Zbl

[11] Mogulskii E. Z., “Teorema polnoty sistemy sobstvennykh i prisoedinennykh vektorov ratsionalnogo operatornogo puchka”, Izvestiya AN Arm. SSR. Ser. matem., 3:6 (1968), 427–442 | MR

[12] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[13] Papkovich P. F., Stroitelnaya mekhanika korablya, t. II, Gos. izd-vo sudostroitelnoi promyshlennosti, Leningrad, 1941

[14] Grinberg G. A., “O metode, predlozhennom P. F. Papkovichem dlya resheniya ploskoi zadachi teorii uprugosti dlya pryamougolnoi oblasti i zadach izgiba pryamougolnoi tonkoi plity s dvumya zakreplennymi kromkami, i o nekotorykh ee obobscheniyakh”, Prikladnaya matem. i mekh., 17:2 (1953), 211–228 | MR | Zbl

[15] Vorovich I. I., “Nekotorye matematicheskie voprosy teorii plastin i obolochek”, Tr. II Vsesoyuznogo s'ezda po teoreticheskoi i prikladnoi mekhanike, no. 3, Nauka, 1966 | Zbl

[16] Allakhverdiev Dzh. E., “O polnote sistemy sobstvennykh i prisoedinennykh elementov odnogo klassa nesamosopryazhennykh operatorov, zavisyaschikh ot parametra $\lambda$”, Dokl. AN SSSR, 160:6 (1965), 1231–1234 | Zbl

[17] Palant Yu. A., “Ob odnom priznake polnoty sistemy sobstvennykh i prisoedinennykh vektorov polinomialnogo puchka operatorov”, Dokl. AN SSSR, 141:3 (1961), 558–560 | MR | Zbl

[18] Khille E., Fillips R., Funktsionalnyi analiz i podgruppy, IL, M., 1962

[19] Shilov G. E., Gurevich B. A., Integral, mera i proizvodnaya, Nauka, 1967

[20] Friedman A., Shinbrot M., “Nonlinear eigenvalue problems”, Acta Math., 121:1,2 (1968), 77–125 | DOI | MR | Zbl