Poles of pseudo-Riemannian spaces
Izvestiya. Mathematics, Tome 9 (1975) no. 5, pp. 1035-1068
Cet article a éte moissonné depuis la source Math-Net.Ru
Two-dimensional complete analytic pseudo-Riemannian spaces $V$ with poles are studied. A pole is a point $p\in V$ with respect to which $V$ admits a one-parameter group of rotations. With each pole is connected a holomorphic function $F_p(z)$ (the complex pole function). Necessary conditions on $F_p(z)$ are established. A number of “existence theorems” are proved: for a given holomorphic function $F(z)$ with certain properties there exists a complete space $V$ with pole $p$ for which the function $F_p(z)$ coincides with $F(z)$.
@article{IM2_1975_9_5_a5,
author = {A. S. Solodovnikov and N. R. Kamyshanskii},
title = {Poles of {pseudo-Riemannian} spaces},
journal = {Izvestiya. Mathematics},
pages = {1035--1068},
year = {1975},
volume = {9},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/}
}
A. S. Solodovnikov; N. R. Kamyshanskii. Poles of pseudo-Riemannian spaces. Izvestiya. Mathematics, Tome 9 (1975) no. 5, pp. 1035-1068. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/