Poles of pseudo-Riemannian spaces
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 1035-1068.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional complete analytic pseudo-Riemannian spaces $V$ with poles are studied. A pole is a point $p\in V$ with respect to which $V$ admits a one-parameter group of rotations. With each pole is connected a holomorphic function $F_p(z)$ (the complex pole function). Necessary conditions on $F_p(z)$ are established. A number of “existence theorems” are proved: for a given holomorphic function $F(z)$ with certain properties there exists a complete space $V$ with pole $p$ for which the function $F_p(z)$ coincides with $F(z)$.
@article{IM2_1975_9_5_a5,
     author = {A. S. Solodovnikov and N. R. Kamyshanskii},
     title = {Poles of {pseudo-Riemannian} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1035--1068},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/}
}
TY  - JOUR
AU  - A. S. Solodovnikov
AU  - N. R. Kamyshanskii
TI  - Poles of pseudo-Riemannian spaces
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1035
EP  - 1068
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/
LA  - en
ID  - IM2_1975_9_5_a5
ER  - 
%0 Journal Article
%A A. S. Solodovnikov
%A N. R. Kamyshanskii
%T Poles of pseudo-Riemannian spaces
%J Izvestiya. Mathematics 
%D 1975
%P 1035-1068
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/
%G en
%F IM2_1975_9_5_a5
A. S. Solodovnikov; N. R. Kamyshanskii. Poles of pseudo-Riemannian spaces. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 1035-1068. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a5/