Partially ordered sets of infinite type
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 911-938.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a necessary and sufficient condition is given that a partially ordered set have tame type, i.e. that it admit classification of its indecomposable representations. Bibliography: 16 titles.
@article{IM2_1975_9_5_a0,
     author = {L. A. Nazarova},
     title = {Partially ordered sets of infinite type},
     journal = {Izvestiya. Mathematics },
     pages = {911--938},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a0/}
}
TY  - JOUR
AU  - L. A. Nazarova
TI  - Partially ordered sets of infinite type
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 911
EP  - 938
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a0/
LA  - en
ID  - IM2_1975_9_5_a0
ER  - 
%0 Journal Article
%A L. A. Nazarova
%T Partially ordered sets of infinite type
%J Izvestiya. Mathematics 
%D 1975
%P 911-938
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a0/
%G en
%F IM2_1975_9_5_a0
L. A. Nazarova. Partially ordered sets of infinite type. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 911-938. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a0/

[1] Nazarova L. A., Roiter A. V., “Predstavleniya chastichno uporyadochennykh mnozhestv”, Zap. seminarov LOMI AN SSSR, 28, 1972, 5–31 | MR | Zbl

[2] Nazarova L. A., “Predstavleniya kolchanov beskonechnogo tipa”, Izv. AN SSSR. Ser. matem., 37 (1973), 752–791 | MR | Zbl

[3] Nazarova L. A., Roiter A. V., Kategornye matrichnye zadachi i problema Brauera–Trella, Preprint, Kiev, 1973 | MR

[4] Gabriel P., “Indecomposable representations, II”, Symposia Math., Inst. Naz. di Alta Mat., XI (1973) | MR | Zbl

[5] Brenner S., “Quivers with commutativity conditions and some phenomenology of forms”, Proc. Internat. conf. of representations of algebras (October, 1974, 5.01–5.02), Carleton Math. Lect. Note, 9 | MR

[6] Butler M. C. R., “On the classification of local integral representations of finite abelian $p$-groups”, Proc. Internat. conf. of representations of algebras (October, 1974, 6.01–6.18), Carleton Math. Lect. Note, 9, Carleton Univ., Ottawa, Ont., 1974 | MR

[7] Gabriel P., “Representations indecomposables des Ensembles ordonnes”, Seminaire Dubreil, Algebra 26-e annee, 13, Secrétariat Mathématique, Paris, 1972/3, 1301–1304 | MR

[8] Kleiner M. M., “Chastichno uporyadochennye mnozhestva konechnogo tipa”, Zap. seminarov LOMI AN SSSR, 28, 1972, 32–41 | MR | Zbl

[9] Ringel M. R., “The representation type of local algebras”, Proc. Internat. conf. of representations of algebras (October, 1974, 22.01–22.24), Carleton Math. Lect. Notes, 9 | MR

[10] Freislich M. R., Donovan P. W., Some evidence for an extension of Brauer–Thrall conjecture, werkstätte über Unzerlegbare Darstellungen von Ringen und Gruppen, November 1973, 16–18, Bonn

[11] Donovan P. W., Freslich M. R., The representation theory of finite groups and associated algebras, Carleton Math. Lecture Notes, 5, 1973 | MR | Zbl

[12] Nazarova L. A., Roiter A. V., “Ob odnoi zadache I. M. Gelfanda”, Funkts. analiz i ego prilozheniya, 7:4 (1973), 54–69 | MR | Zbl

[13] Gelfand I. M., Kogomologii beskonechnomernykh algebr Li, nekotorye voprosy integralnoi geometrii, Doklad na Mezhdunarodnom kongresse matematikov, Nitstsa, 1970

[14] Kleiner M. M., “O tochnykh predstavleniyakh chastichno uporyadochennykh mnozhestv konechnogo tipa”, Zap. seminarov LOMI AN SSSR, 28, 1972, 42–59 | MR | Zbl

[15] Otrashevskaya V. V., O kriterii odnoparametrichnosti chastichno uporyadochennykh mnozhestv, Tr. Vsesoyuzn. algebraich. simpoziuma, Gomel, 1975

[16] Gelfand I. M., Ponomarëv V. A., “Nerazlozhimye predstavleniya gruppy Lorentsa”, Uspekhi matem. nauk, 23:2 (1968), 3–59 | MR | Zbl