On a~programmed construction in a~positional differential game
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 877-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given the system $$ \frac{dx}{dt}=f(t,x,u,v),\qquad x(t_0)=x_0. $$ sufficient conditions are considered for solving the game problem of convergence by a prescribed instant of time under mixed strategies. A programmed construction on the basis of generalized controls-measures is used to solve the problem. Necessary conditions for optimality of the programmed controls are studied. Bibliography: 9 titles.
@article{IM2_1975_9_4_a9,
     author = {V. D. Batukhtin and A. G. Chentsov},
     title = {On a~programmed construction in a~positional differential game},
     journal = {Izvestiya. Mathematics },
     pages = {877--886},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a9/}
}
TY  - JOUR
AU  - V. D. Batukhtin
AU  - A. G. Chentsov
TI  - On a~programmed construction in a~positional differential game
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 877
EP  - 886
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a9/
LA  - en
ID  - IM2_1975_9_4_a9
ER  - 
%0 Journal Article
%A V. D. Batukhtin
%A A. G. Chentsov
%T On a~programmed construction in a~positional differential game
%J Izvestiya. Mathematics 
%D 1975
%P 877-886
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a9/
%G en
%F IM2_1975_9_4_a9
V. D. Batukhtin; A. G. Chentsov. On a~programmed construction in a~positional differential game. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 877-886. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a9/

[1] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya”, Izv. AN SSSR, Tekhnicheskaya kibernetika, 1973, no. 2, 3, 3–18, 22–42 | MR | Zbl

[2] Batukhtin V. D., Krasovskii N. N., “Zadacha programmnogo upravleniya na maksimin”, Izv. AN SSSR, Tekhnicheskaya kibernetika, 1972, no. 6, 35–44 | MR | Zbl

[3] Chentsov A. G., “Ob igrovoi zadache programmnogo upravleniya”, Dokl. AN SSSR, 213:2 (1973), 289–292 | Zbl

[4] Chentsov A. G., “Ob igrovykh zadachakh sblizheniya-ukloneniya”, PMM, 38:2 (1974), 201 | Zbl

[5] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, PMM, 34:6 (1970), 1005–1022 | MR | Zbl

[6] Danford V., Shvarts Dzh. T., Lineinye operatory, I, ILL, M., 1962

[7] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[9] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR