Topological invariants of elliptic operators.~I. $K$-homology
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the homological $K$-functor is defined on the category of involutory Banach algebras, and Bott periodicity is proved, along with a series of theorems corresponding to the Eilenberg–Steenrod axioms. As an application, a generalization of the Atiyah–Singer index theorem is obtained, and some problems connected with representation rings of discrete groups and higher signatures of smooth manifolds are discussed.
Bibliography: 16 items.
@article{IM2_1975_9_4_a3,
author = {G. G. Kasparov},
title = {Topological invariants of elliptic {operators.~I.} $K$-homology},
journal = {Izvestiya. Mathematics },
pages = {751--792},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/}
}
G. G. Kasparov. Topological invariants of elliptic operators.~I. $K$-homology. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/