Topological invariants of elliptic operators.~I. $K$-homology
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the homological $K$-functor is defined on the category of involutory Banach algebras, and Bott periodicity is proved, along with a series of theorems corresponding to the Eilenberg–Steenrod axioms. As an application, a generalization of the Atiyah–Singer index theorem is obtained, and some problems connected with representation rings of discrete groups and higher signatures of smooth manifolds are discussed. Bibliography: 16 items.
@article{IM2_1975_9_4_a3,
     author = {G. G. Kasparov},
     title = {Topological invariants of elliptic {operators.~I.} $K$-homology},
     journal = {Izvestiya. Mathematics },
     pages = {751--792},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/}
}
TY  - JOUR
AU  - G. G. Kasparov
TI  - Topological invariants of elliptic operators.~I. $K$-homology
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 751
EP  - 792
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/
LA  - en
ID  - IM2_1975_9_4_a3
ER  - 
%0 Journal Article
%A G. G. Kasparov
%T Topological invariants of elliptic operators.~I. $K$-homology
%J Izvestiya. Mathematics 
%D 1975
%P 751-792
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/
%G en
%F IM2_1975_9_4_a3
G. G. Kasparov. Topological invariants of elliptic operators.~I. $K$-homology. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/

[1] Atiyah M. F., “Bott periodicity and the index of elliptic operators”, Quart. Journ. Math., 19:74 (1968), 113–140 | DOI | MR | Zbl

[2] Atiyah M. F., “Global theory of elliptic operators”, Math. Rev., 42:1 (1971), 1154 | MR

[3] Atya M. F., Zinger I. M., “Indeks ellipticheskikh operatorov, I”, Uspekhi matem. nauk, 23:5 (1968), 99–142 | MR

[4] Atya M. F., Zinger I. M., “Indeks ellipticheskikh operatorov, IV”, Uspekhi matem. nauk, 27:4 (1972), 161–178 | MR

[5] Atya M. F., Zinger I. M., “Indeks ellipticheskikh operatorov, V”, Uspekhi matem. nauk, 27:4 (1972), 179–188

[6] Atiyah M. F., Singer I. M., “Index theory for skew-adjoint Fredholm operators”, Publ. Math. IHES, 1969, no. 37, 5–26 | MR | Zbl

[7] Karoubi M., “Algèbres de Clifford et $K$-théorie”, Ann. Sci. Ecole Norm. Super., 4 ser., 1:2 (1968), 161–270 | MR | Zbl

[8] Karoubi M., “Espaces classifiants en $K$-théorie”, Trans. Amer. Math. Soc., 147:1 (1970), 75–116 | DOI | MR

[9] Kasparov G. G., “Obobschennyi indeks ellipticheskikh operatorov”, Tezisy VI Vsesoyuznoi topologicheskoi konferentsii, Tbilisi, 1972, 62–63

[10] Kasparov G. G., “Obobschennyi indeks ellipticheskikh operatorov”, Funkts. analiz, 7:3 (1973), 82–83 | MR | Zbl

[11] Michael E., “Convex structures and continuous selections”, Canad. J. Math., 11:4 (1959), 556–575 | MR | Zbl

[12] Mischenko A. S., “Beskonechnomernye predstavleniya diskretnykh grupp i gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii”, Uspekhi matem. nauk, 28:2 (1973), 239–240 | MR | Zbl

[13] Mischenko A. S., “Beskonechnomernye predstavleniya diskretnykh grupp i vysshie signatury”, Izv. AN SSSR. Seriya matem., 38 (1974), 81–106 | Zbl

[14] Novikov S. P., “Algebraicheskoe postroenie i svoistva ermitovykh analogov $K$-teorii nad koltsami s involyutsiei s tochki zreniya gamiltonova formalizma. Nekotorye primeneniya k differentsialnoi topologii i teorii kharakteristicheskikh klassov, II”, Izv. AN SSSR. Ser. matem., 34 (1970), 475–500 | Zbl

[15] Segal G., “Fredholm complexes”, Quart. J. Math., 21:84 (1970), 385–402 | DOI | MR | Zbl

[16] Whitehead G. W., “Generalized homology theories”, Trans. Amer. Math. Soc., 102:2 (1962), 227–283 | DOI | MR | Zbl