Topological invariants of elliptic operators.~I. $K$-homology
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the homological $K$-functor is defined on the category of involutory Banach algebras, and Bott periodicity is proved, along with a series of theorems corresponding to the Eilenberg–Steenrod axioms. As an application, a generalization of the Atiyah–Singer index theorem is obtained, and some problems connected with representation rings of discrete groups and higher signatures of smooth manifolds are discussed. Bibliography: 16 items.
@article{IM2_1975_9_4_a3,
     author = {G. G. Kasparov},
     title = {Topological invariants of elliptic {operators.~I.} $K$-homology},
     journal = {Izvestiya. Mathematics },
     pages = {751--792},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/}
}
TY  - JOUR
AU  - G. G. Kasparov
TI  - Topological invariants of elliptic operators.~I. $K$-homology
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 751
EP  - 792
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/
LA  - en
ID  - IM2_1975_9_4_a3
ER  - 
%0 Journal Article
%A G. G. Kasparov
%T Topological invariants of elliptic operators.~I. $K$-homology
%J Izvestiya. Mathematics 
%D 1975
%P 751-792
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/
%G en
%F IM2_1975_9_4_a3
G. G. Kasparov. Topological invariants of elliptic operators.~I. $K$-homology. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 751-792. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a3/