Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 727-749

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper develops techniques for the nonabelian cohomology $H^1(M,G)$ of a group scheme $M$ finite over a ring $A$ with values in an $A$-group $G$ on which $M$ acts. The finiteness of $H^1(M,G)$ is proved in the case when $A$ is a field of type $(F)$ or a ring of arithmetic type. From this result finiteness theorems are deduced for the decomposition of a $G(A)$ conjugacy class under intersection with the subgroup $G^M(A)$ of fixed integral points of $M$ in $G$ and the more general $G(A)$-orbits. Bibliography: 20 titles.
@article{IM2_1975_9_4_a2,
     author = {E. A. Nisnevich},
     title = {Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes},
     journal = {Izvestiya. Mathematics },
     pages = {727--749},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/}
}
TY  - JOUR
AU  - E. A. Nisnevich
TI  - Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 727
EP  - 749
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/
LA  - en
ID  - IM2_1975_9_4_a2
ER  - 
%0 Journal Article
%A E. A. Nisnevich
%T Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
%J Izvestiya. Mathematics 
%D 1975
%P 727-749
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/
%G en
%F IM2_1975_9_4_a2
E. A. Nisnevich. Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 727-749. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/