Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 727-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper develops techniques for the nonabelian cohomology $H^1(M,G)$ of a group scheme $M$ finite over a ring $A$ with values in an $A$-group $G$ on which $M$ acts. The finiteness of $H^1(M,G)$ is proved in the case when $A$ is a field of type $(F)$ or a ring of arithmetic type. From this result finiteness theorems are deduced for the decomposition of a $G(A)$ conjugacy class under intersection with the subgroup $G^M(A)$ of fixed integral points of $M$ in $G$ and the more general $G(A)$-orbits. Bibliography: 20 titles.
@article{IM2_1975_9_4_a2,
     author = {E. A. Nisnevich},
     title = {Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes},
     journal = {Izvestiya. Mathematics },
     pages = {727--749},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/}
}
TY  - JOUR
AU  - E. A. Nisnevich
TI  - Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 727
EP  - 749
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/
LA  - en
ID  - IM2_1975_9_4_a2
ER  - 
%0 Journal Article
%A E. A. Nisnevich
%T Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes
%J Izvestiya. Mathematics 
%D 1975
%P 727-749
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/
%G en
%F IM2_1975_9_4_a2
E. A. Nisnevich. Nonabelian cohomology and finiteness theorems for integral orbits of affine group schemes. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 727-749. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a2/

[1] Artin M., “Algebraicheskaya approksimatsiya struktur nad polnymi lokalnymi koltsami”, Matematika, 14:3 (1970), 3–39 | MR | Zbl

[2] Borel A., Kharish-Chandra, “Arifmeticheskie podgruppy algebraicheskikh grupp Li”, Matematika, 8:2 (1964), 19–71 | MR

[3] Borel A., Serre J.-P., “Theoremes de finitude en cohomologie galoisienne”, Comm. Math. Helv., 39 (1964), 111–164 | DOI | MR | Zbl

[4] Demazure M., Gabriel P., Groups algebriques, t. I, Masson-North-Holland, Paris, Amsterdam, 1970 | MR | Zbl

[5] Demazure M., Grothendieck A., Schemas en groupes, Seminaire de Geometrie algebrique du Bois Marie 1962/64, Lect. Notes in Math., 151, 153, Springer-Verlag, Berlin, 1971

[6] Greenberg M., “Schemata over local rings, I, II”, Ann. Math., 73:3 (1961), 624–648 ; 78:2 (1963), 256–266 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Greenberg M., “Rational points in Henselian discreate valuations rings”, Publ. Math. IHES, 1966, no. 31, 563–568 | MR | Zbl

[8] Grothendieck A., Revetements etales et Groupe Fondamental, Seminaire de Geometrie algebrique du Bois Marie 1960/61, Lect. Notes in Math., 224, Springer-Verlag, Berlin, 1971 | MR | Zbl

[9] Grothendieck A., Dieudonne J., “Elements de Geometrie algebrique”, Publ. Math. IHES, 1960–1967, no. 4, 8, 11, 20, 32

[10] Moore J. P., “Representation of unramified functors”, Seminaire Bourbaki 1964/1965, annee 17, no. 3, Benjamin, N.Y., 1966, 294/01-294/19

[11] Nisnevich E. A., “Neabelevy kogomologii, svyazannye s poluprostymi avtomorfizmami, i sopryazhennost v algebraicheskikh gruppakh”, Izv. AN BSSR, ser. fiz.-matem., 6 (1973), 4–12

[12] Nisnevich E. A., “Neabelevy kogomologii i teoremy konechnosti dlya tselochislennykh orbit poluprostykh gruppovykh skhem”, Uspekhi matem. nauk, XXIX:3 (1974), 219–220

[13] Richardson R. W., “Conjugacy classes in Lie algebras and algebraic groups”, Ann. Math., 86:1 (1967), 1–15 | DOI | MR | Zbl

[14] Cepp Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[15] Springer T. A., Steinberg R., Conjugacy classes, Lect. Notes in Math., 131, Springer-Verlag, Berlin, 1970, E/01 – E/100 | Zbl

[16] Steinberg R., “Classes of elements of semisimple algebraic groups”, Tr. Mezhdunarodnogo kongressa matematikov (M., 1966), Mir, M., 1968, 277–284 | MR

[17] Bass X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[18] Bass H., Unitary algebraic $K$-theory, Lect. Notes in Math., 343, Springer-Verlag, Berlin, 1973 | MR

[19] Mamford D., Lektsii o krivykh na algebraicheskikh poverkhnostyakh, Mir, M., 1968

[20] Nisnevich E. A., “Etalnye kogomologii, $T$-rod i tselochislennye orbity affinnykh gruppovykh skhem”, Uspekhi matem. nauk, XXX:3 (1975), 169–170