A multiparameter semigroup of operators, mixed moduli and aproximation
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 887-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains generalizations of results of N. P. Kuptsov and the author on approximation in a Banach space and of M. K. Potapov and the author on approximation of periodic functions of several variables. Let multiparameter groups and a semigroup of commuting operators act in a Banach space. With respect to these there are defined mixed moduli for the elements of the space, analogues of the mixed moduli of smoothness for functions of several variables. With respect to the groups an approximation apparatus is constructed, generalizing the method which Potapov calls approximation by a “corner” and the author calls approximation by a mixed trigonometric polynomial. For approximations and mixed moduli, direct and inverse theorems are proved, and also propositions asserting that operators generating semigroups are integral powers of operators generating groups. Bibliography: 15 items.
@article{IM2_1975_9_4_a10,
     author = {A. P. Terekhin},
     title = {A multiparameter semigroup of operators, mixed moduli and aproximation},
     journal = {Izvestiya. Mathematics },
     pages = {887--910},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a10/}
}
TY  - JOUR
AU  - A. P. Terekhin
TI  - A multiparameter semigroup of operators, mixed moduli and aproximation
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 887
EP  - 910
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a10/
LA  - en
ID  - IM2_1975_9_4_a10
ER  - 
%0 Journal Article
%A A. P. Terekhin
%T A multiparameter semigroup of operators, mixed moduli and aproximation
%J Izvestiya. Mathematics 
%D 1975
%P 887-910
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a10/
%G en
%F IM2_1975_9_4_a10
A. P. Terekhin. A multiparameter semigroup of operators, mixed moduli and aproximation. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 887-910. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a10/

[1] Kuptsov N. P., “Pryamye i obratnye teoremy teorii priblizhenii i polugruppy operatorov”, Uspekhi matem. nauk, 23:4 (1968), 117–178 | MR | Zbl

[2] Terekhin A. P., “Ogranichennaya gruppa operatorov i nailuchshee priblizhenie”, Differentsialnye uravneniya i vychislitelnaya matematika, no. 2, Saratovskii universitet, 1973, 3–28

[3] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[5] Potapov M. K., “O priblizhenii uglom”, Proc. Conf. Constr. Theory Funct. (Budapest, 1969), Budapest, 1972, 371–399 | MR | Zbl

[6] Terekhin A. P., “Smeshannye svoistva gladkosti periodicheskikh funktsii mnogikh peremennykh i priblizhenie smeshannymi trigonometricheskimi polinomami”, Issledovaniya po differentsialnym uravneniyam i teorii funktsii, Saratovskii universitet, 1971, 66–114

[7] Bugrov Ya. S., “Priblizhenie trigonometricheskimi polinomami funktsii mnogikh peremennykh”, Tr. Nauchn. ob'edineniya prepodavatelei fiz. matem. fak-tov, ped. in-tov Dalnego Vostoka, t. 1 (Matematika), Khabarovsk, 1962

[8] Potapov M. K., “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ smeshannykh proizvodnykh”, Mathematica, 10(33):2 (1968), 335, Rumyniya, Kluzh | MR

[9] Danford N., Shvarts Dzh., Lineinye operatory (obschaya teoriya), IL, M., 1962

[10] Lyubich Yu. I., “Ob usloviyakh polnoty sistemy sobstvennykh vektorov korrektnogo operatora”, Uspekhi matem. nauk, 18:1 (1963), 165–174 | MR

[11] Terekhin A. P., “Polugruppy operatorov i smeshannye svoistva elementov banakhova prostranstva”, Matem. zametki, 16:1 (1974), 107–115

[12] Butzer P. L., Berens M., Semi-groups of operators and approximation, Springer, Berlin, Heidelberg, New York, 1967 | MR | Zbl

[13] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[14] Stechkin S. B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Matem. sb., 29(71):1 (1951), 225–231 | MR

[15] Golovkin K. K., Parametricheski normirovannye prostranstva i normirovannye massivy, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 106, 1969 | MR | Zbl