On some classes of closed pro-$p$-groups
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 663-691

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the problem of the finiteness of a pro-$p$-group $G$ with trivial Schur multiplicator (or closed pro-$p$-group) in the following three cases: (i) $G$ has 3 generators and 3 defining relations, $p\geqslant3$ and $G^p\supset(G,G)$; (ii) $G$ has 2 generators and 2 defining relations, $p\geqslant5$ and $G^p\supset(G,G,G)$; (iii) $G$ has 3 generators and 3 defining relations, $p\geqslant5$ and one of the relations lies in the fourth term of the Zassenhaus filtration. Bibliography: 19 items.
@article{IM2_1975_9_4_a0,
     author = {I. V. Andozhskii},
     title = {On some classes of closed pro-$p$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {663--691},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a0/}
}
TY  - JOUR
AU  - I. V. Andozhskii
TI  - On some classes of closed pro-$p$-groups
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 663
EP  - 691
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a0/
LA  - en
ID  - IM2_1975_9_4_a0
ER  - 
%0 Journal Article
%A I. V. Andozhskii
%T On some classes of closed pro-$p$-groups
%J Izvestiya. Mathematics 
%D 1975
%P 663-691
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a0/
%G en
%F IM2_1975_9_4_a0
I. V. Andozhskii. On some classes of closed pro-$p$-groups. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 663-691. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a0/