Smooth knots in a~manifold of homotopy type~$K(\pi,1)$
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 577-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies the set $\operatorname{Iso}(S^m,M^n)$ of smooth isotopy classes of embeddings of a sphere $S^m$ in a manifold $M^n$ having homotopy type $K(\pi,1)$, where $1$. He obtains an explicit expression for $\operatorname{Iso}(S^m,M^n)$ in terms of the group $\pi=\pi_1(M^n)$ and the well-known Haefliger groups of knots and finite links of the sphere $S^m$ in $R^n$. Bibliography: 7 items.
@article{IM2_1975_9_3_a6,
     author = {S. G. Smirnov},
     title = {Smooth knots in a~manifold of homotopy type~$K(\pi,1)$},
     journal = {Izvestiya. Mathematics },
     pages = {577--598},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a6/}
}
TY  - JOUR
AU  - S. G. Smirnov
TI  - Smooth knots in a~manifold of homotopy type~$K(\pi,1)$
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 577
EP  - 598
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a6/
LA  - en
ID  - IM2_1975_9_3_a6
ER  - 
%0 Journal Article
%A S. G. Smirnov
%T Smooth knots in a~manifold of homotopy type~$K(\pi,1)$
%J Izvestiya. Mathematics 
%D 1975
%P 577-598
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a6/
%G en
%F IM2_1975_9_3_a6
S. G. Smirnov. Smooth knots in a~manifold of homotopy type~$K(\pi,1)$. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 577-598. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a6/

[1] Haefliger A., “Differentiable embeddings of $S^n$ in $S^{n+q}$ for $q>2$”, Ann. Math., 83:3 (1966), 402–436 | DOI | MR | Zbl

[2] Haefliger A., “Enlacements de spheres en codimension supériore à 2”, Comment. Math. Helv., 41:1 (1966), 51–72 | DOI | MR | Zbl

[3] Haefliger A., “Knotted $(4k-1)$-spheres in $6k$-space”, Ann. Math., 75:3 (1962), 452–466 | DOI | MR | Zbl

[4] Zeeman E. C., Seminar on combinatorial topology, 6, 7, 8, Institut des Hautes Etudes Scientifiques, Paris, 1963, 1965, 1966

[5] Milgram R. J., On the Haefliger knot groups, 78:5 (1972), 861–865 | MR | Zbl

[6] Hoo S. T., Mahowald M., “Some homotopy groups of Stiefel manifolds”, Bull. Amer. Math. Soc., 71:4 (1965), 661–667 | DOI | MR | Zbl

[7] Smirnov S. G., “Gladkie uzly v rassloenii nad okruzhnostyu”, Matem. sb., 85:2 (1971), 256–271 | MR | Zbl