Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 535-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we find all irreducible three-dimensional affine algebraic varieties that admit a quasi-transitive algebraic group of biregular automorphisms (that is, there is an orbit under the group action whose complement has dimension at most zero). The ground field is algebraically closed and has characteristic zero. Bibliography: 29 items.
@article{IM2_1975_9_3_a5,
     author = {V. L. Popov},
     title = {Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group},
     journal = {Izvestiya. Mathematics },
     pages = {535--576},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 535
EP  - 576
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/
LA  - en
ID  - IM2_1975_9_3_a5
ER  - 
%0 Journal Article
%A V. L. Popov
%T Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
%J Izvestiya. Mathematics 
%D 1975
%P 535-576
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/
%G en
%F IM2_1975_9_3_a5
V. L. Popov. Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 535-576. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/

[1] Gizatullin M. X., “Kvaziodnorodnye affinnye poverkhnosti”, Izv. AN SSSR. Ser. matem., 35 (1971), 1047–1071 | MR | Zbl

[2] Gizatullin M. X., Danilov V. I., “Avtomorfizmy affinnykh poverkhnostei, I”, Izv. AN SSSR. Ser. matem, 39 (1975), 523–565 | MR

[3] Popov V. L., “Klassifikatsiya affinnykh algebraicheskikh poverkhnostei, kvaziodnorodnykh otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 37 (1973), 1038–1055 | MR | Zbl

[4] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $SL_2$”, Izv. AN SSSR. Ser. matem., 37 (1973), 792–832 | MR | Zbl

[5] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–763 | MR

[6] Gizatullin M. X., “Affinnye poverkhnosti, kvaziodnorodnye otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 35 (1971), 738–753 | MR

[7] Vinberg E. B., “Algebraicheskie gruppy preobrazovanii maksimalnogo ranga”, Matem. sb., 88(130) (1972), 493–503 | MR | Zbl

[8] Demazure M., “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Ann. Scient. Ecole Norm. Super, ser. 3, 4:4 (1970), 507–588 | MR | Zbl

[9] Kempt G., Knudsen F., Mumford D., Saint-Donat B., Toroidal Embeddings, I, Lect. Notes in Math., 339, 1973

[10] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 371–385 | Zbl

[11] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[12] Mumford D., Geometric Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1965 | MR | Zbl

[13] Bialynicki-Birula A., “On fixed point schemes of actions of multiplicative and additive groups”, Prepr. Ser. Mat., no. 30, Inst. Aarhus Univ., 1971–1972 | MR

[14] Birkes D., “Orbits of linear algebraic groups”, Ann. Math., 93:3 (1971), 459–475 | DOI | MR

[15] Séminaire C. Chevalley Classification des groupes de Lie algébriques, Secrétariat Math., Paris, 1956–58

[16] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[17] Bialynicki-Birula A., Hochschild G., Mostow G., “Extensions of representation of linear algebraic groups”, Am. J. Math., 85 (1963), 131–144 | DOI | MR | Zbl

[18] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30 (1952), 349–362 | MR

[19] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li, MGU, mekh-matem. fak-t, M., 1968

[20] Matsushima Y., “Espaces homogeneous de Stein des groupes de Lie complexes”, Nagoya Math. J., 16 (1960), 205–218 | MR | Zbl

[21] Bialynicki-Birula A., “On homogeneous affine spaces of linear algebraic groups”, Am. J. Math., 85 (1963), 577–582 | DOI | MR | Zbl

[22] Popov V. L., “Gruppy Pikara lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Izv. AN SSSR. Ser. matem., 38 (1974), 294–322 | Zbl

[23] Rosenlicht M., “Some rationality questions on algebraic groups”, Ann. Math., 43 (1957), 25–50 | MR | Zbl

[24] Veil G., Simmetriya, Nauka, M., 1968 | MR

[25] Chevalley S., “On algebraic group varieties”, J. Math. Soc. Jap., 6:3,4 (1954), 303–324 | MR | Zbl

[26] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[27] Rosenlicht M., “Toroidal algebraic groups”, Proc. Am. Math. Soc., 12 (1961), 984–988 | DOI | MR | Zbl

[28] Khu-Sy-Tszyan, Teoriya gomotopii, Mir, M., 1964

[29] Steinberg R., “Conjugacy classes in algebraic groups”, Lect. Notes in Math., 366, Berlin, Heidelberg, N.Y., 1974 | MR | Zbl