Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 535-576

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we find all irreducible three-dimensional affine algebraic varieties that admit a quasi-transitive algebraic group of biregular automorphisms (that is, there is an orbit under the group action whose complement has dimension at most zero). The ground field is algebraically closed and has characteristic zero. Bibliography: 29 items.
@article{IM2_1975_9_3_a5,
     author = {V. L. Popov},
     title = {Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group},
     journal = {Izvestiya. Mathematics },
     pages = {535--576},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 535
EP  - 576
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/
LA  - en
ID  - IM2_1975_9_3_a5
ER  - 
%0 Journal Article
%A V. L. Popov
%T Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group
%J Izvestiya. Mathematics 
%D 1975
%P 535-576
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/
%G en
%F IM2_1975_9_3_a5
V. L. Popov. Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 535-576. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a5/