Automorphisms of affine surfaces.~I
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 493-534

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the group of automorphisms $\operatorname{Aut}(X)$ of an affine surface $X$ which can be made complete by adding a zigzag. This study is based on the computation of the action of $\operatorname{Aut}(X)$ on a certain tree $\Delta_X$ associated with the surface $X$. Our results are used to give a description of forms of the surface $X$ and of algebraic subgroups of $\operatorname{Aut}(X)$. Bibliography: 15 items.
@article{IM2_1975_9_3_a4,
     author = {M. Kh. Gizatullin and V. I. Danilov},
     title = {Automorphisms of affine {surfaces.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {493--534},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a4/}
}
TY  - JOUR
AU  - M. Kh. Gizatullin
AU  - V. I. Danilov
TI  - Automorphisms of affine surfaces.~I
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 493
EP  - 534
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a4/
LA  - en
ID  - IM2_1975_9_3_a4
ER  - 
%0 Journal Article
%A M. Kh. Gizatullin
%A V. I. Danilov
%T Automorphisms of affine surfaces.~I
%J Izvestiya. Mathematics 
%D 1975
%P 493-534
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a4/
%G en
%F IM2_1975_9_3_a4
M. Kh. Gizatullin; V. I. Danilov. Automorphisms of affine surfaces.~I. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 493-534. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a4/