The embedding problem with given localizations
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 481-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find necessary and sufficient conditions, stated in cohomological terms, for the existence of a solution to the numerical abelian imbedding problem with given local behavior for a finite set of prime points. Bibliography: 6 items.
@article{IM2_1975_9_3_a3,
     author = {V. V. Ishkhanov},
     title = {The embedding problem with given localizations},
     journal = {Izvestiya. Mathematics },
     pages = {481--492},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a3/}
}
TY  - JOUR
AU  - V. V. Ishkhanov
TI  - The embedding problem with given localizations
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 481
EP  - 492
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a3/
LA  - en
ID  - IM2_1975_9_3_a3
ER  - 
%0 Journal Article
%A V. V. Ishkhanov
%T The embedding problem with given localizations
%J Izvestiya. Mathematics 
%D 1975
%P 481-492
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a3/
%G en
%F IM2_1975_9_3_a3
V. V. Ishkhanov. The embedding problem with given localizations. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 481-492. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a3/

[1] Yakovlev A. V., “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. matem., 28 (1964), 645–660 | Zbl

[2] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL., M., 1960

[3] Wang S., “A counter example to Grunwald theorem”, Ann. Math., 49:4 (1949), 1008–1009 | DOI | MR

[4] Wang S., “On Grunwald's theorem”, Ann. Math., 51:2 (1950), 471–484 | DOI | MR | Zbl

[5] Neukirch J., “Über das Einbettungs Problem der algebraischen Zahlentheorie”, Inv. Math., 21 (1973), 59–116 | DOI | MR | Zbl

[6] Lang S., Rapport sur la cohomologie des groups, N.Y., Amsterdam, 1966 | MR