Theorem on the ``universality'' of the Riemann zeta-function
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 443-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the question of approximating analytic functions by translations of the Riemann zeta-function. Bibliography: 6 items.
@article{IM2_1975_9_3_a0,
     author = {S. M. Voronin},
     title = {Theorem on the ``universality'' of the {Riemann} zeta-function},
     journal = {Izvestiya. Mathematics },
     pages = {443--453},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/}
}
TY  - JOUR
AU  - S. M. Voronin
TI  - Theorem on the ``universality'' of the Riemann zeta-function
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 443
EP  - 453
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/
LA  - en
ID  - IM2_1975_9_3_a0
ER  - 
%0 Journal Article
%A S. M. Voronin
%T Theorem on the ``universality'' of the Riemann zeta-function
%J Izvestiya. Mathematics 
%D 1975
%P 443-453
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/
%G en
%F IM2_1975_9_3_a0
S. M. Voronin. Theorem on the ``universality'' of the Riemann zeta-function. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 443-453. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/

[1] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[2] Pecherskii D. V., “O perestanovkakh chlenov v funktsionalnykh ryadakh”, Dokl. AN SSSR, 209:6 (1973), 1285–1287

[3] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR

[4] Polia G., Sëge G., Zadachi i teoremy iz analiza, ch. 2, GITTL, M., 1956

[5] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[6] Titchmarsh E. K., Teoriya funktsii, GITTL, M., L., 1951