Theorem on the “universality” of the Riemann zeta-function
Izvestiya. Mathematics, Tome 9 (1975) no. 3, pp. 443-453
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper considers the question of approximating analytic functions by translations of the Riemann zeta-function. Bibliography: 6 items.
@article{IM2_1975_9_3_a0,
author = {S. M. Voronin},
title = {Theorem on the {\textquotedblleft}universality{\textquotedblright} of the {Riemann} zeta-function},
journal = {Izvestiya. Mathematics},
pages = {443--453},
year = {1975},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/}
}
S. M. Voronin. Theorem on the “universality” of the Riemann zeta-function. Izvestiya. Mathematics, Tome 9 (1975) no. 3, pp. 443-453. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a0/
[1] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953
[2] Pecherskii D. V., “O perestanovkakh chlenov v funktsionalnykh ryadakh”, Dokl. AN SSSR, 209:6 (1973), 1285–1287
[3] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR
[4] Polia G., Sëge G., Zadachi i teoremy iz analiza, ch. 2, GITTL, M., 1956
[5] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[6] Titchmarsh E. K., Teoriya funktsii, GITTL, M., L., 1951