A theorem on topological versal deformation
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 277-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a topological versal deformation exists for almost any germ of a smooth mapping; the exceptional germs constitute a set of codimension infinity in the space of all germs. Bibliography: 7 items.
@article{IM2_1975_9_2_a4,
     author = {A. N. Varchenko},
     title = {A theorem on topological versal deformation},
     journal = {Izvestiya. Mathematics },
     pages = {277--296},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - A theorem on topological versal deformation
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 277
EP  - 296
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/
LA  - en
ID  - IM2_1975_9_2_a4
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T A theorem on topological versal deformation
%J Izvestiya. Mathematics 
%D 1975
%P 277-296
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/
%G en
%F IM2_1975_9_2_a4
A. N. Varchenko. A theorem on topological versal deformation. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 277-296. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/

[1] Varchenko A. N., “Lokalnye topologicheskie svoistva differentsiruemykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 38 (1974), 1037–1090 | Zbl

[2] Varchenko A. N., “Teoremy o topologicheskoi ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii i semeistv polinomialnykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36 (1972), 957–1019 | MR | Zbl

[3] Gabrielov A. M., “Formalnye sootnosheniya mezhdu analiticheskimi funktsiyami”, Izv. AN SSSR. Ser. matem., 37 (1973), 1056–1090 | MR | Zbl

[4] Abhyankar S. S., Local analitic geometry, Academic Press, New York, London, 1964 | MR | Zbl

[5] Tom R., “Bifurkatsionnoe podmnozhestvo prostranstva otobrazhenii”, Uspekhi matem. nauk, 27:5 (1972), 51–57 | MR | Zbl

[6] Varchenko A. N., “Lokalnye topologicheskie svoistva analiticheskikh otobrazhenii”, Izv. AN SSSR. Ser. matem., 37 (1973), 883–916 | Zbl

[7] Pham F., Remarque sur l'equisingularite universelle, Faculte des sciences Nice, Mathematiaues, decembre 1970