Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1975_9_2_a4, author = {A. N. Varchenko}, title = {A theorem on topological versal deformation}, journal = {Izvestiya. Mathematics }, pages = {277--296}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {1975}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/} }
A. N. Varchenko. A theorem on topological versal deformation. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 277-296. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a4/
[1] Varchenko A. N., “Lokalnye topologicheskie svoistva differentsiruemykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 38 (1974), 1037–1090 | Zbl
[2] Varchenko A. N., “Teoremy o topologicheskoi ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii i semeistv polinomialnykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36 (1972), 957–1019 | MR | Zbl
[3] Gabrielov A. M., “Formalnye sootnosheniya mezhdu analiticheskimi funktsiyami”, Izv. AN SSSR. Ser. matem., 37 (1973), 1056–1090 | MR | Zbl
[4] Abhyankar S. S., Local analitic geometry, Academic Press, New York, London, 1964 | MR | Zbl
[5] Tom R., “Bifurkatsionnoe podmnozhestvo prostranstva otobrazhenii”, Uspekhi matem. nauk, 27:5 (1972), 51–57 | MR | Zbl
[6] Varchenko A. N., “Lokalnye topologicheskie svoistva analiticheskikh otobrazhenii”, Izv. AN SSSR. Ser. matem., 37 (1973), 883–916 | Zbl
[7] Pham F., Remarque sur l'equisingularite universelle, Faculte des sciences Nice, Mathematiaues, decembre 1970