On Kummer surfaces
Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 261-275
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we show that a Kähler $K3$ surface containing 16 nonsingular rational curves which do not intersect one another is a Kummer surface. We also give a direct proof of the global Torelli theorem for Kummer surfaces and develop a criterion for a surface to be Kummer which refines the criterion in the paper "A Torelli theorem for algebraic $K3$ surfaces" by I. I. Pyatetskii-Shapiro and I. R. Shafarevich. Bibliography: 8 items.
@article{IM2_1975_9_2_a3,
author = {V. V. Nikulin},
title = {On {Kummer} surfaces},
journal = {Izvestiya. Mathematics},
pages = {261--275},
year = {1975},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a3/}
}
V. V. Nikulin. On Kummer surfaces. Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 261-275. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a3/
[1] Hudson M. A., Kummer's quartic surface, University Press, Cambridge, 1905 | Zbl
[2] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl
[3] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35 (1971), 530–572
[4] Mayer A., “Families of K3 surfaces”, Nagoya Math. J., 38 (1972), 1–17 | MR
[5] Saint-Donat B., Projective models of K3 surfaces, preprint, Cambridge, Mass., 1972
[6] Wyler O., “Incidence geometry”, Duke Math. J., 20:4 (1953), 601–610 | DOI | MR | Zbl
[7] Cepp Zh.-P., Kurs arifmetiki, Mir, M., 1972 | MR
[8] Kodaira K., “O kompaktnykh analiticheskikh poverkhnostyakh”, Matematika, 6:6 (1962), 19–56