Endomorphisms of abelian varieties over fields of finite characteristic
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 255-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semisimplicity of $l$-adic representations corresponding to one-dimensional étale cohomology, and a proof of the Tate's conjecture about homomorphisms of abelian varieties, are derived from the Tate's finiteness conjecture on isogenies of polarized abelian varieties. Bibliography: 4 items.
@article{IM2_1975_9_2_a2,
     author = {Yu. G. Zarhin},
     title = {Endomorphisms of abelian varieties over fields of finite characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {255--260},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Endomorphisms of abelian varieties over fields of finite characteristic
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 255
EP  - 260
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/
LA  - en
ID  - IM2_1975_9_2_a2
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Endomorphisms of abelian varieties over fields of finite characteristic
%J Izvestiya. Mathematics 
%D 1975
%P 255-260
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/
%G en
%F IM2_1975_9_2_a2
Yu. G. Zarhin. Endomorphisms of abelian varieties over fields of finite characteristic. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 255-260. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/

[1] Zarkhin Yu. G., “Izogenii abelevykh mnogoobrazii nad polyami konechnoi kharakteristiki”, Matem. sb., 95:3 (1974), 461–470 | Zbl

[2] Parshin A. N., “Minimalnye modeli v krivykh roda 2 i gomomorfizmy abelevykh mnogoobrazii, opredelennykh nad polem konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 36 (1973), 67–109

[3] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper Row,, New York, 1965, 93–110 | MR

[4] Tate J., “Endomorphisms of abelian varieties over finite fields”, Inv. Math., 2 (1966), 134–144 | DOI | MR | Zbl