Endomorphisms of abelian varieties over fields of finite characteristic
Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 255-260
Cet article a éte moissonné depuis la source Math-Net.Ru
The semisimplicity of $l$-adic representations corresponding to one-dimensional étale cohomology, and a proof of the Tate's conjecture about homomorphisms of abelian varieties, are derived from the Tate's finiteness conjecture on isogenies of polarized abelian varieties. Bibliography: 4 items.
@article{IM2_1975_9_2_a2,
author = {Yu. G. Zarhin},
title = {Endomorphisms of abelian varieties over fields of finite characteristic},
journal = {Izvestiya. Mathematics},
pages = {255--260},
year = {1975},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/}
}
Yu. G. Zarhin. Endomorphisms of abelian varieties over fields of finite characteristic. Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 255-260. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a2/
[1] Zarkhin Yu. G., “Izogenii abelevykh mnogoobrazii nad polyami konechnoi kharakteristiki”, Matem. sb., 95:3 (1974), 461–470 | Zbl
[2] Parshin A. N., “Minimalnye modeli v krivykh roda 2 i gomomorfizmy abelevykh mnogoobrazii, opredelennykh nad polem konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 36 (1973), 67–109
[3] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper Row,, New York, 1965, 93–110 | MR
[4] Tate J., “Endomorphisms of abelian varieties over finite fields”, Inv. Math., 2 (1966), 134–144 | DOI | MR | Zbl