On $p$-closed algebraic number fields with restricted ramification
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254
Voir la notice de l'article provenant de la source Math-Net.Ru
Normal extensions $K$ of a given number field $k$, which are unramified outside a given set $S$ of divisors and are for a fixed prime $p$ closed under $p$-extensions, are considered in the paper. It is assumed that $S$ contains all Archimedean places and all prime divisors of $p$. The cohomology group $H^2(K/k, Z/pZ)$is described, and it is proved that the cohomological $p$-dimension of the Galois group $K/k$ does not exceed 2.
Bibliography: 9 items.
@article{IM2_1975_9_2_a1,
author = {O. Neumann},
title = {On $p$-closed algebraic number fields with restricted ramification},
journal = {Izvestiya. Mathematics },
pages = {243--254},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/}
}
O. Neumann. On $p$-closed algebraic number fields with restricted ramification. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/