On $p$-closed algebraic number fields with restricted ramification
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

Normal extensions $K$ of a given number field $k$, which are unramified outside a given set $S$ of divisors and are for a fixed prime $p$ closed under $p$-extensions, are considered in the paper. It is assumed that $S$ contains all Archimedean places and all prime divisors of $p$. The cohomology group $H^2(K/k, Z/pZ)$is described, and it is proved that the cohomological $p$-dimension of the Galois group $K/k$ does not exceed 2. Bibliography: 9 items.
@article{IM2_1975_9_2_a1,
     author = {O. Neumann},
     title = {On $p$-closed algebraic number fields with restricted ramification},
     journal = {Izvestiya. Mathematics },
     pages = {243--254},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/}
}
TY  - JOUR
AU  - O. Neumann
TI  - On $p$-closed algebraic number fields with restricted ramification
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 243
EP  - 254
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/
LA  - en
ID  - IM2_1975_9_2_a1
ER  - 
%0 Journal Article
%A O. Neumann
%T On $p$-closed algebraic number fields with restricted ramification
%J Izvestiya. Mathematics 
%D 1975
%P 243-254
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/
%G en
%F IM2_1975_9_2_a1
O. Neumann. On $p$-closed algebraic number fields with restricted ramification. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/

[1] Brumer A., “Galois groups of extensions of algebraic number fields with given ramification”, Michigan Math. J., 13 (1966), 33–40 | DOI | MR | Zbl

[2] Hoechsmann K., “$l$-extensions”, Algebraic number theory, chap. XIV, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, 1967 ; Algebraicheskaya teoriya chisel, Mir, M., 1972 | MR

[3] Kazarnovskii B. A., “Dokazatelstvo odnoi teoremy Teita”, Uspekhi matem. nauk, 27:6 (1972), 54–66

[4] Koch H., Galoissche Theorie der $p$-Erweiterungen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1970 ; Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR | Zbl | MR | Zbl

[5] Kuzmin L. V., “Gomologii prokonechnykh grupp, multiplikator Shura i teoriya polei klassov”, Izv. AN SSSR. Ser. matem., 33 (1969), 1220–1254 | MR

[6] Shafarevich I. R., “Rasshireniya s zadannymi tochkami vetvleniya”, Institut des Hautes Etudes Scientifiques, no. 8, Publications Mathematiques, 1964 | Zbl

[7] Serre J.-P., Cohomologie galoisienne, Lecture Notes in Mathematics, 5, Springer-Verlag, 1964; Kogomologii Galua, Mir, M., 1968 | MR

[8] Tate J., “Duality theorems in Galois cohomology over number fields”, Proceed. Intern. Congr. Stockholm, 1962, 288–295 | MR

[9] Tate J., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Sem. Bourbaki, 306, 1966 ; “O gipotezakh Bercha i Svinnertona-Daiera i ikh geometricheskom analoge”, Matematika, 12:6 (1968), 41–55 | Zbl