On $p$-closed algebraic number fields with restricted ramification
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254

Voir la notice de l'article provenant de la source Math-Net.Ru

Normal extensions $K$ of a given number field $k$, which are unramified outside a given set $S$ of divisors and are for a fixed prime $p$ closed under $p$-extensions, are considered in the paper. It is assumed that $S$ contains all Archimedean places and all prime divisors of $p$. The cohomology group $H^2(K/k, Z/pZ)$is described, and it is proved that the cohomological $p$-dimension of the Galois group $K/k$ does not exceed 2. Bibliography: 9 items.
@article{IM2_1975_9_2_a1,
     author = {O. Neumann},
     title = {On $p$-closed algebraic number fields with restricted ramification},
     journal = {Izvestiya. Mathematics },
     pages = {243--254},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/}
}
TY  - JOUR
AU  - O. Neumann
TI  - On $p$-closed algebraic number fields with restricted ramification
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 243
EP  - 254
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/
LA  - en
ID  - IM2_1975_9_2_a1
ER  - 
%0 Journal Article
%A O. Neumann
%T On $p$-closed algebraic number fields with restricted ramification
%J Izvestiya. Mathematics 
%D 1975
%P 243-254
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/
%G en
%F IM2_1975_9_2_a1
O. Neumann. On $p$-closed algebraic number fields with restricted ramification. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a1/