On the asymptotic behavior of the spectral characteristics of exterior problems for the Schr\"odinger operator
Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 139-223

Voir la notice de l'article provenant de la source Math-Net.Ru

The Green's function $G(x,y;\lambda)$, $x,y\in\Omega$, $\lambda>0$, of the Schrödinger equation $-\Delta_xG+v(x)G-\lambda G=\delta(x-y)$ satisfying a radiation condition at infinity is considered in the exterior $\Omega$ of a convex smooth closed hypersurface $\Gamma$ in $R^m$. The potential is assumed to be a smooth function with compact support. Asymptotic formulas for $\lambda\to\infty$that are uniform in $x$ and $y$ are obtained. Bibliography: 17 items.
@article{IM2_1975_9_1_a6,
     author = {V. S. Buslaev},
     title = {On the asymptotic behavior of the spectral characteristics of exterior problems for the {Schr\"odinger} operator},
     journal = {Izvestiya. Mathematics },
     pages = {139--223},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a6/}
}
TY  - JOUR
AU  - V. S. Buslaev
TI  - On the asymptotic behavior of the spectral characteristics of exterior problems for the Schr\"odinger operator
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 139
EP  - 223
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a6/
LA  - en
ID  - IM2_1975_9_1_a6
ER  - 
%0 Journal Article
%A V. S. Buslaev
%T On the asymptotic behavior of the spectral characteristics of exterior problems for the Schr\"odinger operator
%J Izvestiya. Mathematics 
%D 1975
%P 139-223
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a6/
%G en
%F IM2_1975_9_1_a6
V. S. Buslaev. On the asymptotic behavior of the spectral characteristics of exterior problems for the Schr\"odinger operator. Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 139-223. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a6/