$q$-finite morphisms in formal algebraic geometry
Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 27-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce definitions and study properties of $q$-finite and $q$-acyclic morphisms of formal algebraic spaces. We give criteria for the existence of formal contractions in terms of 1-finite morphisms. We use these criteria to prove the existence of certain modifications and the algebraizability of certain formal morphisms. Bibliography: 15 items.
@article{IM2_1975_9_1_a3,
     author = {F. L. Zak},
     title = {$q$-finite morphisms in formal algebraic geometry},
     journal = {Izvestiya. Mathematics },
     pages = {27--62},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a3/}
}
TY  - JOUR
AU  - F. L. Zak
TI  - $q$-finite morphisms in formal algebraic geometry
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 27
EP  - 62
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a3/
LA  - en
ID  - IM2_1975_9_1_a3
ER  - 
%0 Journal Article
%A F. L. Zak
%T $q$-finite morphisms in formal algebraic geometry
%J Izvestiya. Mathematics 
%D 1975
%P 27-62
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a3/
%G en
%F IM2_1975_9_1_a3
F. L. Zak. $q$-finite morphisms in formal algebraic geometry. Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 27-62. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a3/

[1] Andreotti A., Grauert G., “Teoremy konechnosti dlya kogomologii kompleksnykh prostranstv”, Kompleksnye prostranstva, sb. perevodov, Mir, M., 1965, 105–189

[2] Artin M., “Algebraization of formal moduli. II: Existence of modifications”, Ann. Math., 91:1 (1970), 88–135 | DOI | MR

[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[4] Goodman J., Hartshorne R., “Schemes with finite-dimensional cohomology groups”, Amer. J. Math., 91:1 (1969), 258–266 | DOI | MR | Zbl

[5] Griffiths Ph. A., “The extension problem in complex analysis. II: Embeddings with positive normal bundle”, Amer. J. Math., 88:2 (1966), 366–446 | DOI | MR | Zbl

[6] Grotendik A., “Teoriya kogomologii abstraktnykh algebraicheskikh mnogoobrazii”, Mezhdunarodnyi matematicheskii kongress v Edinburge 1958 g., obzornye doklady, Fizmatgiz, M., 1962, 116–137

[7] Grothendieck A., Dieudonné J., “Eléments de géométrie algébrique”, Publs. Math. IHES, 1960, 1968, no. 4, 8, 11, 17, 20, 24, 28, 32

[8] Grothendieck A., Revetements étales et groupe fondamental (SGA1), Lect. Notes in Math., 224, Springer, Berlin, Heidelberg, N.Y., 1971 | MR | Zbl

[9] Knutson D., “Algebraic Spaces”, Lect. Notes in Math., 203, Springer, Berlin, Heidelberg, N.Y., 1971 | MR | Zbl

[10] Nagata M., “A generalization of the imbedding problem of an abstract variety in a complete variety”, J. Math. Kyoto Univ., 3:1 (1963), 89–102 | MR | Zbl

[11] Narasimhan R., “The Levi problem for complex spaces, II”, Math. Ann., 146:3 (1962), 196–216 | DOI | MR

[12] Raynaud M., “Passage au quotient par une relation d'equivalence plate”, Proc. Conf. Local Fields (Driebergen, 1966), Berlin, Heidelberg, New York, 1967

[13] Raynaud M., Gruson L., “Gritères de platitude et de projectivitè”, Invent. Math., 13:1,2 (1971), 1–89 | DOI | MR | Zbl

[14] Zak F. L., “O stabilnosti biratsionalnykh morfizmov”, Uspekhi matem. nauk, 29:4 (1974), 165–166 | MR | Zbl

[15] Zak F. L., “Deformatsii modifikatsii algebraicheskikh prostranstv”, Matem. sb., 96(138):2 (1975), 212–239 | MR | Zbl