On an invariant of a double of quadrics
Izvestiya. Mathematics, Tome 9 (1975) no. 1, pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown how the Hesse curve and theta-characteristic of a bundle of quadrics can be used to reconstruct the initial bundle. The corresponding construction is used to prove the global Torelli theorem for the intersection of three quadrics. Bibliography: 2 items.
@article{IM2_1975_9_1_a2,
     author = {A. N. Tyurin},
     title = {On an invariant of a~double of quadrics},
     journal = {Izvestiya. Mathematics},
     pages = {21--25},
     year = {1975},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a2/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - On an invariant of a double of quadrics
JO  - Izvestiya. Mathematics
PY  - 1975
SP  - 21
EP  - 25
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a2/
LA  - en
ID  - IM2_1975_9_1_a2
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T On an invariant of a double of quadrics
%J Izvestiya. Mathematics
%D 1975
%P 21-25
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a2/
%G en
%F IM2_1975_9_1_a2
A. N. Tyurin. On an invariant of a double of quadrics. Izvestiya. Mathematics, Tome 9 (1975) no. 1, pp. 21-25. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a2/