Transitivity of exceptional subspaces
Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves that if $Z$ is an exceptional complex subspace of the complex space $Y$ and if $Y$ is an exceptional complex subspace of the complex space $X$, then $Z$ is exceptional in $X$. Bibliography: 5 items.
@article{IM2_1975_9_1_a1,
     author = {V. A. Krasnov},
     title = {Transitivity of exceptional subspaces},
     journal = {Izvestiya. Mathematics },
     pages = {13--20},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Transitivity of exceptional subspaces
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 13
EP  - 20
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/
LA  - en
ID  - IM2_1975_9_1_a1
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Transitivity of exceptional subspaces
%J Izvestiya. Mathematics 
%D 1975
%P 13-20
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/
%G en
%F IM2_1975_9_1_a1
V. A. Krasnov. Transitivity of exceptional subspaces. Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/

[1] Nakano S., “On the extension of positive vector bundles”, Math. Jap., 17 (1972), 33–38 | MR | Zbl

[2] Wiegmann K.-W., “Über Quotienten holomorph-konvexer komlexer Räume”, Math. Z., 97 (1967), 251–267 | DOI | MR

[3] Narasimkhan R., “Problema Levi dlya kompleksnykh prostranstv”, Kompleksnye prostranstva, Mir, M., 1966, 11–28

[4] Khironaka X., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR

[5] Grauert G., “O modifikatsiyakh i isklyuchitelnykh analiticheskikh mnozhestvakh”, Kompleksnye prostranstva, Mir, M., 1965, 45–104 | MR