Transitivity of exceptional subspaces
Izvestiya. Mathematics, Tome 9 (1975) no. 1, pp. 13-20
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves that if $Z$ is an exceptional complex subspace of the complex space $Y$ and if $Y$ is an exceptional complex subspace of the complex space $X$, then $Z$ is exceptional in $X$. Bibliography: 5 items.
@article{IM2_1975_9_1_a1,
author = {V. A. Krasnov},
title = {Transitivity of exceptional subspaces},
journal = {Izvestiya. Mathematics},
pages = {13--20},
year = {1975},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/}
}
V. A. Krasnov. Transitivity of exceptional subspaces. Izvestiya. Mathematics, Tome 9 (1975) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a1/
[1] Nakano S., “On the extension of positive vector bundles”, Math. Jap., 17 (1972), 33–38 | MR | Zbl
[2] Wiegmann K.-W., “Über Quotienten holomorph-konvexer komlexer Räume”, Math. Z., 97 (1967), 251–267 | DOI | MR
[3] Narasimkhan R., “Problema Levi dlya kompleksnykh prostranstv”, Kompleksnye prostranstva, Mir, M., 1966, 11–28
[4] Khironaka X., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR
[5] Grauert G., “O modifikatsiyakh i isklyuchitelnykh analiticheskikh mnozhestvakh”, Kompleksnye prostranstva, Mir, M., 1965, 45–104 | MR