On the homology of a~tensor product of local rings
Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 1-12

Voir la notice de l'article provenant de la source Math-Net.Ru

For quotient rings $A$ and $B$ of a regular ring $R$ the connection between the Hopf algebras $\operatorname{Tor}^A(k,k)$, $\operatorname{Tor}^B(k,k)$ and $\operatorname{Tor}^{A\underset R\otimes R}(k,k)$ is investigated. In general, this connection is expressed by a spectral sequence. Criteria are obtained for $$ \operatorname{Tor}^{A\underset R\otimes R}(k,k)\cong\operatorname{Tor}^A(k,k)\underset{\operatorname{Tor}^R(k,k)}\otimes\operatorname{Tor}^B(k,k). $$ Bibliography: 18 items.
@article{IM2_1975_9_1_a0,
     author = {L. L. Avramov},
     title = {On the homology of a~tensor product of local rings},
     journal = {Izvestiya. Mathematics },
     pages = {1--12},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/}
}
TY  - JOUR
AU  - L. L. Avramov
TI  - On the homology of a~tensor product of local rings
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1
EP  - 12
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/
LA  - en
ID  - IM2_1975_9_1_a0
ER  - 
%0 Journal Article
%A L. L. Avramov
%T On the homology of a~tensor product of local rings
%J Izvestiya. Mathematics 
%D 1975
%P 1-12
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/
%G en
%F IM2_1975_9_1_a0
L. L. Avramov. On the homology of a~tensor product of local rings. Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/