On the homology of a~tensor product of local rings
Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

For quotient rings $A$ and $B$ of a regular ring $R$ the connection between the Hopf algebras $\operatorname{Tor}^A(k,k)$, $\operatorname{Tor}^B(k,k)$ and $\operatorname{Tor}^{A\underset R\otimes R}(k,k)$ is investigated. In general, this connection is expressed by a spectral sequence. Criteria are obtained for $$ \operatorname{Tor}^{A\underset R\otimes R}(k,k)\cong\operatorname{Tor}^A(k,k)\underset{\operatorname{Tor}^R(k,k)}\otimes\operatorname{Tor}^B(k,k). $$ Bibliography: 18 items.
@article{IM2_1975_9_1_a0,
     author = {L. L. Avramov},
     title = {On the homology of a~tensor product of local rings},
     journal = {Izvestiya. Mathematics },
     pages = {1--12},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/}
}
TY  - JOUR
AU  - L. L. Avramov
TI  - On the homology of a~tensor product of local rings
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1
EP  - 12
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/
LA  - en
ID  - IM2_1975_9_1_a0
ER  - 
%0 Journal Article
%A L. L. Avramov
%T On the homology of a~tensor product of local rings
%J Izvestiya. Mathematics 
%D 1975
%P 1-12
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/
%G en
%F IM2_1975_9_1_a0
L. L. Avramov. On the homology of a~tensor product of local rings. Izvestiya. Mathematics , Tome 9 (1975) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/IM2_1975_9_1_a0/

[1] André M., “Hopf algebras with divided powers”, J. of Algebra, 18 (1971), 19–50 | DOI | MR | Zbl

[2] Assmus E. F. Jr., “On the homology of local rings”, Ill J. Math., 3 (1959), 187–199 | MR | Zbl

[3] Auslander M., “Modules over unramified regular local rings”, Proc. Int. Congr. Math. (Stockholm, 1962), Uppsala, 1963, 230–233 | MR | Zbl

[4] Avramov L. L., “Ob algebre Khopfa lokalnogo koltsa”, Izv. AN SSSR. Ser. matem., 38 (1974), 253–277 | MR | Zbl

[5] Cartan H., “Puissances divisées”, Seminaire H. Cartan. 7e année, 7, 1954/55

[6] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[7] Golod E. S., “O gomologiyakh nekotorykh lokalnykh kolets”, Dokl. AN SSSR, 144:3 (1962), 479–482 | MR | Zbl

[8] Cover E. H., “Multiplicative structure of generalized Koszul complexes”, Trans. Amer. Math. Soc., 185 (1973), 287–307 | DOI | MR

[9] Cugenheim V. K. A. M., “On extensions of algebras, coalgebras and Hopf algebras”, Amer. J. Math., 84 (1962), 346–382

[10] Gulliksen T. H., Levin G., “Homology of local rings”, Queen's Papers in Pure and Appl. Math., 20, Kingston (Ontario), 1969 | MR | Zbl

[11] Herzog J., Komplexe, Auflosungen und Dualität in der localen Algebra, Preprint, Regensburg, 1973

[12] Lichtenbaum S., “On the vanishing of Tor in regular local rings”, Ill. J. Math., 10 (1966), 220–226 | MR | Zbl

[13] Milnor J., Moore J., “On the structure of Hopf algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[14] Moore J., “Algèbre homologique et homologie des espaces classifiants”, Seminaire H. Cartan, 12e annee, 7, 1959/60

[15] Scheja G., “Über die Bettizahlen localer Ringe”, Math. Ann., 155 (1964), 155–172 | DOI | MR | Zbl

[16] Cepp Zh.-P., “Lokalnaya algebra i teoriya kratnostei”, Matematika, 7:5 (1963), 3–93

[17] Tate J., “Homology of Noetherian rings and of local rings”, Ill. J. Math., 1 (1957), 14–27 | MR | Zbl

[18] Wolffhardt K., “Die Betti-Reiche und die Abweichungen eines localen Rings”, Math. Z., 144 (1970), 66–78 | DOI | MR